若函數(shù)f(x)=(x2+bx+c)e-x在(-∞,-1),(1,+∞)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,則b+c的值為( )
A.3
B.-1
C.1
D.-3
【答案】分析:因?yàn)楹瘮?shù)的極值點(diǎn)是函數(shù)增減區(qū)間的分界點(diǎn),函數(shù)f(x)=(x2+bx+c)e-x在(-∞,-1),(1,+∞)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,所以函數(shù)在x=-1處有極小值,在x=1處有極大值,而函數(shù)極值點(diǎn)處導(dǎo)數(shù)等于0,所以當(dāng)x=-1和1時(shí),導(dǎo)數(shù)等于0,就可解出b,c的值.
解答:解:f′(x)=(2x+b)e-x-(x2+bx+c)e-x
函數(shù)f(x)=(x2+bx+c)e-x在(-∞,-1),(1,+∞)上單調(diào)遞減,在(-1,1)上單調(diào)遞增,
∴函數(shù)在x=-1處有極小值,在x=1處有極大值
∴f′(-1)=0,f′(1)=0
即(-2+b)e-(1-b+c)e=0,(2+b)-(1+b+c)=0
∴2b-c-3=0,1-c=0
解得b=2,c=1,∴b+c=3
故選A
點(diǎn)評(píng):本題主要考查了函數(shù)極值與單調(diào)區(qū)間的關(guān)系,以及利用導(dǎo)數(shù)求函數(shù)極值的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù) fx)=a x (a>0,a≠1 ) 的部分對(duì)應(yīng)值如表:

x

-2

0

fx

0.592

1

則不等  式f-1(│x│<0)的解集是        ()

A. {x│-1<x<1}                  B. {xx<-1或x>1}         

C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-數(shù)學(xué)公式(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
①f(x)=2x+1;
②f(x)=x2;
③f(x)=數(shù)學(xué)公式;
④f(x)=x3
則在區(qū)間[1,2]上具有“數(shù)學(xué)公式級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年福建省寧德市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
①f(x)=2x+1;
②f(x)=x2;
③f(x)=;
④f(x)=x3
則在區(qū)間[1,2]上具有“級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案