10.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),對(duì)?x∈R都有f(x-1)=f(x+1)成立,當(dāng)x∈(0,1]且x1≠x2時(shí),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.給出下列命題
(1)f(1)=0        
(2)f(x)在[-2,2]上有4個(gè)零點(diǎn)
(3)點(diǎn)(2016,0)是函數(shù)y=f(x)的一個(gè)對(duì)稱中心
(4)x=2014是函數(shù)y=f(x)圖象的一條對(duì)稱軸.
則正確是(1)(3).

分析 根據(jù)函數(shù)奇偶性和周期性,單調(diào)性之間的關(guān)系,分別進(jìn)行判斷即可得到結(jié)論.

解答 解:∵對(duì)?x∈R都有f(x-1)=f(x+1)成立,
∴對(duì)?x∈R都有f(x+2)=f(x)成立,
即函數(shù)y=f(x)是周期為2的周期函數(shù),
∴f(1)=f(-1).
∵當(dāng)x∈(0,1]且x1≠x2時(shí),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0,
∴在區(qū)間(0,1]上函數(shù)為減函數(shù).
又∵函數(shù)y=f(x)是定義在R上的奇函數(shù),
∴f(1)=-f(-1).
∴f(1)=0,即(1)正確;
滿足條件的函數(shù)y=f(x)的草圖如下所示:

由圖可知:
f(x)在[-2,2]上有:-2,-1,0,1,2,共5個(gè)零點(diǎn),即(2)錯(cuò)誤;
所有(k,0)(k∈Z)點(diǎn)均為函數(shù)的對(duì)稱中心,故(3)(2016,0)是函數(shù)y=f(x)的一個(gè)對(duì)稱中心,正確;
函數(shù)y=f(x)圖象無(wú)對(duì)稱軸,故(4)錯(cuò)誤.
∴正確的命題是:(1)(3).
故答案為::(1)(3).

點(diǎn)評(píng) 本題主要考查與函數(shù)性質(zhì)有關(guān)的命題的真假判斷,涉及函數(shù)的奇偶性,周期性,單調(diào)性和對(duì)稱性,綜合考查函數(shù)的性質(zhì)的綜合應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=kx2-lnx,若f(x)>0在函數(shù)定義域內(nèi)恒成立,則k的取值范圍是( 。
A.$({\frac{1}{e},e})$B.$({\frac{1}{2e},\frac{1}{e}})$C.$({-∞,\frac{1}{2e}})$D.$({\frac{1}{2e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.“tanx>0”是“sin2x>0“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法正確的個(gè)數(shù)有( 。
(1)三角形、梯形一定是平面圖形;
(2)若四邊形的兩條對(duì)角線相交于一點(diǎn),則該四邊形是平面圖形;
(3)三條平行線最多可確定三個(gè)平面;
(4)平面α和β相交,它們只有有限個(gè)公共點(diǎn);
(5)若A,B,C,D四個(gè)點(diǎn)既在平面α內(nèi),又在平面β內(nèi),則這兩平面重合.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知A,B∈(0,π),那么“A>B”是“cos2A<cos2B”的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x+2y≥0}\\{2x-y≥0(a>0)}\\{x≤a}\end{array}\right.$表示的平面區(qū)域的面積為5,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知m,n∈R,f(x)=x2-mnx.
(1)當(dāng)n=1時(shí),解關(guān)于x的不等式:f(x)>2m2;
(2)若m>0,n>0,且m+n=1,證明:$f(\frac{1}{m})+f(\frac{1}{n})≥7$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x,則下列結(jié)論正確的是(  )
A.f(x)的圖象關(guān)于點(diǎn)$(\frac{2π}{3},0)$中心對(duì)稱
B.f(x)在$[0,\frac{π}{6}]$上單調(diào)遞增
C.把f(x)的圖象向左平移$\frac{π}{12}$個(gè)單位后關(guān)于y軸對(duì)稱
D.f(x)的最小正周期為4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1-x),則f(x)的解析式為$f(x)=\left\{\begin{array}{l}{x(1-x),x>0}\\{0,x=0}\\{x(1+x),x<0}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案