在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,已知拋物線C的極坐標(biāo)方程為ρcos2θ=4sinθ(ρ≥0),直線l的參數(shù)方程為
x=
3
t
y=1+t
(t為參數(shù)),設(shè)直線l與拋物線C的兩交點為A、B,點F為拋物線C的焦點,則|AF|+|BF|=
16
3
16
3
分析:把拋物線C的極坐標(biāo)方程化為直角坐標(biāo)方程,把直線的參數(shù)方程化為普通方程,把直線方程代入拋物線C的方程求得 y1+y2=
10
3
.由拋物線的定義可得|AF|+|BF|=( y1+1)+(y2+1),運算求得結(jié)果.
解答:解:拋物線C的極坐標(biāo)方程為ρcos2θ=4sinθ(ρ≥0),即 x2=4y,焦點(0,1),準(zhǔn)線方程y=-1.
直線l的參數(shù)方程
x=
3
t
y=1+t
(t為參數(shù)),即 x-
3
y+
3
=0,
把直線方程代入拋物線C的方程可得 3y2-10y+3=0,∴y1+y2=
10
3

由拋物線的定義可得|AF|+|BF|=( y1+1)+(y2+1)=
16
3

故答案為
16
3
點評:本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,把參數(shù)方程化為普通方程的方法,拋物線的定義以及標(biāo)準(zhǔn)方程的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當(dāng)且僅當(dāng)l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習(xí)冊答案