已知正方形,則以為焦點(diǎn),且過兩點(diǎn)的橢圓的離心率為______.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,點(diǎn)、分別是橢圓的左、右焦點(diǎn),在橢圓的右準(zhǔn)線上的點(diǎn),滿足線段的中垂線過點(diǎn).直線為動(dòng)直線,且直線與橢圓交于不同的兩點(diǎn)、
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓上存在點(diǎn),滿足為坐標(biāo)原點(diǎn)),
求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)取何值時(shí),的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓C的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率,且經(jīng)過點(diǎn)
(1)求橢圓C的方程;
(2)若直線l經(jīng)過橢圓C的右焦點(diǎn)F2,且與橢圓C交于A,B兩點(diǎn),使得|F1A|,|AB|,|BF1|依次成等差數(shù)列,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點(diǎn)分別為F1、F2.過F1的直線交橢圓于BD兩點(diǎn),過F2的直線交橢圓于AC兩點(diǎn),且ACBD,垂足為P.
(Ⅰ)設(shè)P點(diǎn)的坐標(biāo)為,證明:
(Ⅱ)求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)的連線互相垂直,則此橢圓的離心率為
(    )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知集合A=, 方程: 表示焦點(diǎn)在軸上的橢圓,則這樣的不同橢圓的個(gè)數(shù)是
A.9B.10C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分) 已知:如圖,設(shè)P為橢圓上的任意一點(diǎn),過點(diǎn)P作橢圓的切線,交準(zhǔn)線m于點(diǎn)Z,此時(shí)FZ⊥FP,過點(diǎn)P作PZ的垂線交橢圓的長軸于點(diǎn)G,橢圓的離心率為e,求證:FG=e·FP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(理)已知實(shí)數(shù)滿足,則的取值范圍是   ▲  
(文)已知函數(shù),在同一周期內(nèi),當(dāng)時(shí),取得最大值2;當(dāng) 時(shí),取得最小值,那么該函數(shù)的解析式是   ▲  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),過F1且垂直于x軸的直線與橢圓交于A、B兩點(diǎn),若△ABF2為正三角形,則該橢圓的離心率是_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案