(2011•懷柔區(qū)一模)已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q);
(Ⅱ)對(duì)于集合A={a1,a2,a3,…,an},猜測(cè)ai+aj(1≤i<j≤n)的值最多有多少個(gè);
(Ⅲ)若集合A={2,4,8,…,2n},試求l(A).
分析:(Ⅰ)根據(jù)題中的有關(guān)新定義并且結(jié)合題中所給的集合即可得到l(P)和l(Q)的答案.
(II)根據(jù)組合的有關(guān)知識(shí)可得:
C
2
n
=
n(n-1)
2
個(gè),再結(jié)合題中所給的定義解釋即可得到答案.
(Ⅲ) 由題意可得:l(A)≤
n(n-1)
2
,再分情況討論當(dāng)j≠l時(shí)與當(dāng)j=l,i≠k時(shí),均有ai+aj≠ak+al,進(jìn)而得到l(A)=
n(n-1)
2
解答:解:(Ⅰ)因?yàn)榧螾={2,4,6,8},
所以2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,
所以可得:l(P)=5.
因?yàn)榧螿={2,4,8,16},
所以2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,
所以可得:l(Q)=6.
(Ⅱ)對(duì)于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n-1)
2
個(gè).
因?yàn)樵诩螦的n個(gè)元素中任取一個(gè)元素,共有n種,再?gòu)挠嘞碌膎-1個(gè)元素中任取一個(gè)元素,
共有n-1種.把取出的元素兩兩作和共有n(n-1)個(gè),
因?yàn)閍j+ai=ai+aj等情況,
所以對(duì)于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n-1)
2
個(gè).
(Ⅲ) 因?yàn)榧螦={a1,a2,a3,…,an}最多有
n(n-1)
2
個(gè)ai+aj(1≤i<j≤n)的值,
所以l(A)≤
n(n-1)
2

又集合A={2,4,8,…,2n},任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
當(dāng)j≠l時(shí),不妨設(shè)j<l,則ai+aj<2aj=2j+1≤al<ak+al,即ai+aj≠ak+al
當(dāng)j=l,i≠k時(shí),ai+aj≠ak+al
因此,當(dāng)且僅當(dāng)i=k,j=l時(shí),ai+aj=ak+al
即所有ai+aj(1≤i<j≤n)的值兩兩不同,
所以l(A)=
n(n-1)
2
點(diǎn)評(píng):本題主要考查集合與元素的關(guān)系,以及組合的有關(guān)知識(shí),認(rèn)真審題,正確的理解題意并且仔細(xì)解答是解題的關(guān)鍵點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷柔區(qū)一模)已知集合A={x|x≤1},B={x|0<x<2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷柔區(qū)一模)如圖是甲、乙兩班同學(xué)身高(單位:cm)數(shù)據(jù)的莖葉圖,則甲班同學(xué)身高的中位數(shù)為
169
169
;甲、乙兩班平均身高較高的班級(jí)
乙班
乙班

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷柔區(qū)一模)函數(shù)f(x)=2|x|的最小值為
1
1
;圖象的對(duì)稱(chēng)軸方程為
x=0
x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•懷柔區(qū)一模)已知函數(shù)f(x)=x2-2alnx-1(a≠0).
(Ⅰ)當(dāng)a=2時(shí),求f(x)在x=1處的切線(xiàn)方程;
(Ⅱ)求f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案