(Ⅰ)∵f(x)=x-ln(x+m),x∈(-m,+∞),
∴
f′(x)=1-=,令f'(x)=0,得x=1-m.------------(2分)
當(dāng)x∈(-m,1-m)時,f'(x)<0,f(x)為減函數(shù),f(x)>f(1-m)
當(dāng)x∈(1-m,+∞)時,f'(x)>0,f(x)為增函數(shù),f(x)>f(1-m)---(4分)
根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,
而且對x∈(-m,+∞)都有f(x)≥f(1-m)=1-m.
故當(dāng)m≤1時,f(x)≥0.---------------(6分)
(Ⅱ)證明:由(Ⅰ)知,當(dāng)m>1時,f(1-m)=1-m<0,
函數(shù)f(x)=x-ln(x+m),在[e
-m-m,1-m]上為減函數(shù).
f(e
-m-m)=e
-m-m-ln(e
-m-m+m)=e
-m>0
所以當(dāng)m>1時,f(e
-m-m)與f(1-m)異號.
由函數(shù)零點判定定理知,函數(shù)f(x)在區(qū)間(e
-m-m,1-m)內(nèi)有唯一零點.----------(9分)
而當(dāng)m>1時,f(e
2m-m)=e
2m-3m.
令g(x)=e
2x-3x(x>1),則g′(x)=2e
2x-3(x>1)>2e
2-3>0,
那么函數(shù)g(x)在區(qū)間(1,+∞)上遞增.于是g(x)>g(1)=e
2-3>0,從而f(e
2m-m)=e
2m-3m>0.--(11分)
所以,當(dāng)整數(shù)m>1時,函數(shù)f(x)=x-ln(x+m)在[1-m,e
2m-m]上為增函數(shù)且f(1-m)與f(e
2m-m)異號,
所以函數(shù)f(x)在區(qū)間[1-m,e
2m-m]內(nèi)也有唯一零點.
綜上,當(dāng)m>1時,函數(shù)f(x)在區(qū)間[e
-m-m,e
2m-m]內(nèi)有兩個零點.------------(14分)