12.甲船在點(diǎn)A處測得乙船在北偏東60°的B處,并以每小時10海里的速度向正北方向行使,若甲船沿北偏東30°角方向直線航行,并1小時后與乙船在C處相遇,則甲船的航速為10$\sqrt{3}$海里/小時.

分析 設(shè)甲船的航速為v海里/小時,則AC=v,BC=10,∠CAB=30°,∠ABC=120°,由正弦定理可得甲船的航速.

解答 解:設(shè)甲船的航速為v海里/小時,則AC=v,BC=10,∠CAB=30°,
∠ABC=120°,由正弦定理可得$\frac{10}{\frac{1}{2}}=\frac{v}{\frac{\sqrt{3}}{2}}$,
∴v=10$\sqrt{3}$海里/小時.
故答案為10$\sqrt{3}$.

點(diǎn)評 本題考查利用數(shù)學(xué)知識解決實(shí)際問題,考查正弦定理的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,若a6=S3=12,則數(shù)列{an}的通項(xiàng) an=2n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.銳角△ABC中,已知$a=\sqrt{3},A=\frac{π}{3}$,則b2+c2+3bc的取值范圍是(  )
A.(5,15]B.(7,15]C.(7,11]D.(11,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若對任意的x1,x2∈[$\frac{1}{2}$,2],都有$\frac{a}{{x}_{1}}$+x1lnx1≥x23-x22-3成立,則實(shí)數(shù)a的取值范圍是(  )
A.(0,+∞)B.[1,+∞)C.(-∞,0)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知α為第二象限角,且 sinα=$\frac{\sqrt{15}}{4}$,求$\frac{sin(α+\frac{π}{4})}{sin2α+cos2α+1}$的值.
(2)已知α∈(0,$\frac{π}{4}$),β∈(0,π),且tan(α-β)=$\frac{1}{2}$,tanβ=-$\frac{1}{7}$,求tan(2α-β)的值及角2α-β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列說法中,正確的有④⑤.(寫出所有正確說法的序號)
①已知關(guān)于x的不等式mx2+mx+2>0的角集為R,則實(shí)數(shù)m的取值范圍是0<m<4.
②已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則Sn、S2n-Sn、S3n-S2n也構(gòu)成等比數(shù)列.
③已知函數(shù)$f(x)=\left\{\begin{array}{l}1+{log_a}({x+1}),x≥0\\{x^2}+({4a-3})x+3a,x<0\end{array}\right.$(其中a>0且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程$|{f(x)}|=2-\frac{x}{3}$恰有兩個不相等的實(shí)數(shù)解,則$\frac{1}{3}≤x≤\frac{3}{4}$.
④已知a>0,b>-1,且a+b=1,則$\frac{{a}^{2}+2}{a}$+$\frac{^{2}}{b+1}$的最小值為$\frac{{3+2\sqrt{2}}}{2}$.
⑤在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=|$\overrightarrow{OD}$|=1,$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,A(1,1),則$\overrightarrow{AD}•\overrightarrow{OB}$的取值范圍是$[{-\frac{1}{2}-\sqrt{2},-\frac{1}{2}+\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下面的程序運(yùn)行后,輸出的結(jié)果為4,1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)$z=\frac{2}{1-i}+{(1-i)^2}$,則$|\overline z|$=( 。
A.$\sqrt{3}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義函數(shù)max$\left\{{f(x),g(x)}\right\}=\left\{{\begin{array}{l}{f(x)({f(x)≥g(x)})}\\{g(x)({f(x)<g(x)})}\end{array}}$,則max{sinx,cosx}的最小值為(  )
A.$-\sqrt{2}$B.$\sqrt{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案