在邊長為的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,箱底的邊長是多少時(shí),箱子的容積最大?最大容積是多少?
當(dāng)箱底邊長為時(shí),箱子容積最大,最大容積是.

試題分析:設(shè)箱底邊長為,則無蓋的方底箱子的高,其體積為,從而可得,通過求導(dǎo),討論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減性,根據(jù)函數(shù)的單調(diào)性可求體積的最大值.
試題解析:設(shè)箱底邊長為,則無蓋的方底箱子的高,其體積為
 
,得,解得(舍去)
當(dāng)時(shí),;當(dāng)時(shí),
所以時(shí),單調(diào)遞增;時(shí),單調(diào)遞減,所以函數(shù)時(shí)取得極大值, 結(jié)合實(shí)際情況,這個極大值就是函數(shù)的最大值.
故當(dāng)箱底邊長為時(shí),箱子容積最大,最大容積是.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(其中常數(shù)
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若存在實(shí)數(shù)使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),其中.
(1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(2)如果對于任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,,記.
(1)求曲線處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),若函數(shù)沒有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè),當(dāng)時(shí),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)在曲線上,為曲線在點(diǎn)處的切線的傾斜角,則的取值范圍是(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線yf(x)在點(diǎn)(1,f(1))處的切線方程是( )
A.y=2x-1 B.y=xC.y=3x-2D.y=-2x+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果f(x)=ax3+bx2+c(a>0)的導(dǎo)函數(shù)圖象的頂點(diǎn)坐標(biāo)為(1,- ),那么曲線y=f(x)上任一點(diǎn)的切線的傾斜角α的取值范圍是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案