如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)取平行于y軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.
(1)
(2)見解析
(1)設(shè)橢圓方程為,
左焦點F1(﹣c,0),將橫坐標(biāo)﹣c代入橢圓方程,得y=,
所以①,②,a2=b2+c2③,聯(lián)立①②③解得a=4,
所以橢圓方程為:;
(2)設(shè)Q(t,0)(t>0),圓的半徑為r,直線PP′方程為:x=m(m>t),
則圓Q的方程為:(x﹣t)2+y2=r2,
得x2﹣4tx+2t2+16﹣2r2=0,
由△=0,即16t2﹣4(2t2+16﹣2r2)=0,得t2+r2=8,①
把x=m代入,得
所以點P坐標(biāo)為(m,),代入(x﹣t)2+y2=r2,得,②
由①②消掉r2得4t2﹣4mt+m2=0,即m=2t,
=×(m﹣t)==×=2,
當(dāng)且僅當(dāng)4﹣t2=t2即t=時取等號,
此時t+r=+<4,橢圓上除P、P′外的點在圓Q外,
所以△PP'Q的面積S的最大值為,圓Q的標(biāo)準(zhǔn)方程為:
當(dāng)圓心Q、直線PP′在y軸左側(cè)時,由對稱性可得圓Q的方程為,△PP'Q的面積S的最大值仍為為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)(2011•湖北)平面內(nèi)與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=﹣1時,對應(yīng)的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的右焦點為,點在橢圓上.

(1)求橢圓的方程;
(2)點在圓上,且在第一象限,過作圓的切線交橢圓于,兩點,問:△的周長是否為定值?如果是,求出定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線y2=2x的焦點為F,過點M(
3
,0)的直線與拋物線相交于A、B兩點,與拋物線的準(zhǔn)線相交于點C,|BF|=2,則△BCF與△ACF的面積之比
S△BCF
S△ACF
=( 。
A.
4
5
B.
2
3
C.
4
7
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線與橢圓相交于A、B兩點.
(1)若橢圓的離心率為,焦距為2,求線段AB的長;
(2)若向量與向量互相垂直(其中為坐標(biāo)原點),當(dāng)橢圓的離心率時,求橢圓長軸長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2014·武漢模擬)圓(x-a)2+y2=1與雙曲線x2-y2=1的漸近線相切,則a的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若存在過點的直線與曲線都相切,則等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果橢圓的弦被點(4,2)平分,則這條弦所在的直線方程是 (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為雙曲線的左右焦點,點上,,則(         )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案