已知向量=(m-2,m+3),=(2m+1,m-2),且的夾角為鈍角,則實數(shù)m的取值范圍是   
【答案】分析:夾角為鈍角,根據(jù)平面向量的數(shù)量積運算公式,我們可得<0,但要注意<0,兩個向量還有可能反向,故要注意 ,反向時的情況.
解答:解:∵兩向量的夾角為鈍角則數(shù)量積為負(fù)且兩向量不反向
∴(m-2)(2m+1)+(m+3)(m-2)<0⇒-<m<2;
當(dāng) 反向時,存在λ<0使得
(m-2,m+3)=λ(2m+1,m-2)
⇒m=
∴m≠
故答案為:-<m<2且m≠
點評:如果已知向量的坐標(biāo),求向量的夾角,我們可以分別求出兩個向量的坐標(biāo),進(jìn)一步求出兩個向量的模及他們的數(shù)量積,然后代入公式cosθ=即可求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(mx,2(y-2))
,
b
=(x,y+2)
(m∈R),且滿足
a
b
,動點M(x,y)的軌跡為C.
(Ⅰ)求軌跡C的方程,并說明該方程所表示的軌跡的形狀;
(Ⅱ)若已知圓O:x2+y2=1,當(dāng)m=1時,過點M作圓O的切線,切點為A、B,求向量
OA
OB
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-2),
b
=(1+m,1-m)
,若
a
b
,則實數(shù)m的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(m-2,m+3),
b
=(2m+1,m-2),且
a
b
的夾角為鈍角,則實數(shù)m的取值范圍是
-
4
3
<m<2且m≠
-11+5
5
2
-
4
3
<m<2且m≠
-11+5
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(m,1),向量
b
=(-1,2),若
a
b
,則實數(shù)m的值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知向量
a
=(m-2,m+3),
b
=(2m+1,m-2),且
a
b
的夾角為鈍角,則實數(shù)m的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊答案