8.為了得到函數(shù)y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的圖象,只需要把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)( 。
A.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向左平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)
D.向右平移$\frac{π}{6}$個(gè)單位,再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)

分析 由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)向左平移$\frac{π}{6}$個(gè)單位,可得y=2sin(x+$\frac{π}{6}$)的圖象;
再把所得各點(diǎn)的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變),可得函數(shù)y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的圖象,
故選:C.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U=R,集合A={x|x2+x>0},集合B=$\{y|y=\frac{2}{{{2^x}+1}},x∈R\}$,則(∁UA)∪B=( 。
A.[0,2)B.[-1,0]C.[-1,2)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)大于或等于60°”時(shí),應(yīng)假設(shè)(  )
A.三個(gè)內(nèi)角都大于或等于60°
B.三個(gè)內(nèi)角都小于60°
C.三個(gè)內(nèi)角至多有一個(gè)小于60°
D.三個(gè)內(nèi)角至多有兩個(gè)大于或等于60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={x|$\frac{x-2}{x+1}$≤0},B={x|-4≤x≤1},則A∩B=(  )
A.[-1,1]B.[-4,2]C.(-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一個(gè)袋中裝有大小相同的黑球和白球共8個(gè),從中任取2個(gè)球,記隨機(jī)變量X為取出2個(gè)球中白球的個(gè)數(shù),已知P(X=2)=$\frac{3}{28}$.
(Ⅰ)求袋中白球的個(gè)數(shù);
(Ⅱ)求隨機(jī)變量X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(Ⅰ)求不等式-x2-2x+3<0的解集(用集合或區(qū)間表示)
(Ⅱ)求不等式|x-3|<1的解集(用集合或區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角△ABC中,a,b,c分別是三個(gè)內(nèi)角A,B,C的對邊,若2asinB=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.同時(shí)具有下列性質(zhì):“①對任意x∈R,f(x+π)=f(x)恒成立;②圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)中心對稱;③函數(shù)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)”的函數(shù)可以是(  )
A.f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)B.f(x)=cos(2x-$\frac{π}{3}$)C.f(x)=cos(2x+$\frac{π}{3}$)D.f(x)=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,P在△ABC的三邊上,MN是△ABC外接圓的直徑,若AB=2,BC=3,AC=4,則$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范圍是2.

查看答案和解析>>

同步練習(xí)冊答案