函數(shù)f(x)=2sinx對于x∈R,都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為(  )
A、
π
4
B、
π
2
C、π
D、2π
分析:由題意可知f(x1)是函數(shù)的最小值,f(x2)是函數(shù)的最大值,|x1-x2|的最小值就是函數(shù)的半周期,求解即可.
解答:解:函數(shù)f(x)=2sinx對于x∈R,都有f(x1)≤f(x)≤f(x2),所以f(x1)是函數(shù)的最小值,f(x2)是函數(shù)的最大值,|x1-x2|的最小值就是函數(shù)的半周期,
所以T=
1
=2π,所以|x1-x2|的最小值為:π;
故選C.
點評:本題是基礎(chǔ)題,考查三角函數(shù)的定義的理解,三角函數(shù)的周期的求法,考查計算能力,理解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx+x(0<x<2),則與直線2x-y+1=0平行的函數(shù)f(x)的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求f(x)的最小正周期;
(2)當(dāng)x∈[0,
π2
]
時,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)-1.
(1)求函數(shù)f(x)的最小正周期
(2)當(dāng)x∈[0,
π6
]時,求函數(shù)的最小值;
(3)求函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx)-1
(1)求:函數(shù)f(x)的最大值及取得最大值時的x值;
(2)在給出的直角坐標(biāo)系中,用五點作圖法畫出函數(shù)y=f(x)一個周期內(nèi)的圖象
  x
  y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(cosx-sinx).
(1)當(dāng)0<x<π時,求f(x)的最大值及相應(yīng)的x值;                          
(2)利用函數(shù)y=sinx的圖象經(jīng)過怎樣的變換得到f(x)的圖象.

查看答案和解析>>

同步練習(xí)冊答案