15.給定映射f:(x,y)→(x+2y,2x-y),在映射f下,(3,1)的原像為(  )
A.(1,3)B.(5,5)C.(3,1)D.(1,1)

分析 設(shè)點(3,1)的元素原象是(x,y),由題設(shè)條件建立方程組能夠求出象(3,1)的原象.

解答 解:設(shè)原象為(x,y),
則有$\left\{\begin{array}{l}{x+2y=3}\\{2x-y=1}\end{array}\right.$,
解得x=1,y=1,
則(3,1)在 f 下的原象是(1,1).
故選D.

點評 本題考查映射的概念、函數(shù)的概念,解題的關(guān)鍵是理解所給的映射規(guī)則,根據(jù)此規(guī)則建立方程求出原象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知Rt△ABC,兩直角邊AB=1,AC=2,D是△ABC內(nèi)一點,且∠DAB=60°,設(shè)$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$(λ,μ∈R),則$\frac{λ}{μ}$=(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.3D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)$f(x)=\sqrt{1-{2^x}}$的定義域為{x|x≤0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.“a+b=-2”是“直線x+y=0與圓(x-a)2+(y-b)2=2相切”的( 。
A.既不充分也不必要條件B.必要不充分條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若△ABC的面積為$2\sqrt{3}$,BC=2,C=120°,則邊AB=$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{5}$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=loga(a-x+1)+bx(a>0,a≠1)是偶函數(shù),則( 。
A.b=$\frac{1}{2}$且f(a)>f($\frac{1}{a}$)B.b=-$\frac{1}{2}$且f(a)<f($\frac{1}{a}$)
C.b=$\frac{1}{2}$且f(a+$\frac{1}{a}$)>f($\frac{1}$)D.b=-$\frac{1}{2}$且f(a+$\frac{1}{a}$)<f($\frac{1}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某產(chǎn)品近5年的廣告費支出x(百萬元)與產(chǎn)品銷售額y(百萬元)的數(shù)據(jù)如表:
x12345
y50607080100
(Ⅰ)求y關(guān)于x的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回歸方程預(yù)測該產(chǎn)品廣告費支出6百萬元的產(chǎn)品銷售額y.
附:線性回歸方程y=bx+a中,$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=log2(x2+ax)在(1,+∞)是增函數(shù),則a的取值范圍是[-1,+∞).

查看答案和解析>>

同步練習(xí)冊答案