【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)在函數(shù)的圖象上取兩個不同的點,令直線的斜率為,則在函數(shù)的圖象上是否存在點,且,使得?若存在,求兩點的坐標,若不存在,說明理由.
【答案】(1)見解析 (2)不存在,見解析
【解析】
(1)先求出,再對分四種情況討論得到函數(shù)的單調(diào)區(qū)間;
(2)假設(shè)存在,即滿足,不妨令,計算出得到存在, 只要證存在,令,故轉(zhuǎn)化為存在,即需要證明,再利用導數(shù)證明即得不存在.
(1)由題知定義域為,
①當時,,
令,解得,解得
即函數(shù)在上單調(diào)遞增,在及上單調(diào)遞減;
②當時,,在上,
即函數(shù)在上單調(diào)遞減;
③當時,
令,解得,解得
即函數(shù)在上單調(diào)遞增,在(0,1)及上單調(diào)遞減;
④當時,
令,解得,解得
即函數(shù)在上單調(diào)遞增,在(0,1)上單調(diào)遞減
綜上所述:
當時,增區(qū)間為,減區(qū)間為及;
當時,減區(qū)間為;
當時,增區(qū)間為,減區(qū)間為(0,1)及;
當時,減區(qū)間為(0,1),增區(qū)間為;
(2)假設(shè)存在,即滿足,
因為已知,不妨令,
則
而由
得存在,也就是證存在,
只要證存在,
令,故轉(zhuǎn)化為存在,
即需要證明,令
則有,
故在上單調(diào)遞增,所以,
故不存在.
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準:用水量不超過的部分按照平價收費,超過的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組制作了頻率分布直方圖,
(1)從頻率分布直方圖中估計該40位居民月均用水量的眾數(shù),中位數(shù);
(2)在該樣本中月均用水量少于1噸的居民中隨機抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的菱形中, ,點分別是的中點, ,沿將翻折到,連接,得到如圖的五棱錐,且
(1)求證: 平面(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在2019年亞洲杯前,某商家為了鼓勵中國球迷組團到阿聯(lián)酋支持中國隊,制作了3種精美海報,每份中國隊球迷禮包中隨機裝入一份海報,每集齊3種不同的海報就可獲得中國隊在亞洲杯上所有比賽中的1張門票.現(xiàn)有6名中國隊球迷組成的球迷團,每人各買一份中國隊球迷禮包,則該球迷團至少獲得1張門票的可能情況的種數(shù)為( )
A.360B.450C.540D.990
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線的焦點,點在拋物線上,過點的直線交拋物線于兩點,線段的中點為,且滿足.
(1)若直線的斜率為1,求點的坐標;
(2)若,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x﹣1|.
(1)若f(x)≥|m﹣1|恒成立,求實數(shù)m的最大值M;
(2)在(1)成立的條件下,正實數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com