在△ABC中,角A,B,C所對的邊分別為a,b,c,若a+c=2b,則cosA+cosB-cosAcosC+
1
3
sinAsinC=
 
考點:正弦定理,余弦定理
專題:計算題,三角函數(shù)的求值,解三角形
分析:由已知中在△ABC中,角A、B、C所對的邊分別為a、b、c.若a+c=2b,我們不妨令a=3,b=4,c=5,分別求出cosA,cosB,cosC,sinA,sinC的值,代入即可得到答案.
解答: 解:由于a+c=2b,不妨令a=3,b=4,c=5,
則△ABC為直角三角形
則cosA=
4
5
,cosB=
3
5
,cosC=0,sinA=
3
5
,sinC=1.
則cosA+cosB-cosAcosC+
1
3
sinAsinC=
4
5
+
3
5
-0+
1
3
×
3
5
×1
=
8
5

故答案為:
8
5
點評:本題考查的知識點是同角三角函數(shù)的基本關(guān)系的運算,等差數(shù)列的性質(zhì),在選擇題和填空題中我們可取一組滿足條件的值,代入進(jìn)行運算以求出答案,這種特值法是提高解答小題速度的比較好的方法,一定要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,已知a=
2
bsin(C+
π
4
).
(1)若△ABC的外接圓半徑R=2
2
,求b;
(2)若△ABC的面積為
2
,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg(x-1)+
1
2-x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱PBC-QAD中,側(cè)面ABCD為矩形,PA⊥CD
(1)求證:平面PAD⊥平面PDC;
(2)若BC=
6
,PB=
2
,PC=2,AB=
6
3
,求平面PAB與平面平PBC夾角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)函數(shù)f(x)=a•2x+b•4x,其中常數(shù)a,b滿足ab<0,若f(x+1)>f(x),求實數(shù)x的取值范圍;
(2)設(shè)函數(shù)f(x)=ln(x+1),若0<f(1-2x)-f(x)<1,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A、
4
3
B、
1
3
C、
2
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)f(x)=
x-1,x<0
0,x=0
x+1,x>0
在x=0處的極限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
(x2-mx-m),
(1)若m=1,求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的值域為R,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①已知直線a、b和平面α,若a∥b,且a∥α,則b∥α;
②平面上到一個定點和一條定直線的距離相等的點的軌跡是一條拋物線;
③已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R
)與雙曲線有且只有一個公共點;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.
其中正確命題的序號為
 

查看答案和解析>>

同步練習(xí)冊答案