解:(I)依題意,f(x)在[-5,5]上是偶函數(shù),∴f (-x)-f (x)=[(-x
2)-2ax+2]-(x
2+2ax+2)=-4ax=0
對(duì)任意x∈[-5,5]成立,∴a=0;
∴當(dāng)a=0時(shí),y=f (x)在定義域[-5,5]上是偶函數(shù);
(Ⅱ)∵函數(shù)f(x)=x
2+2ax+2的圖象是拋物線,且開口向上,對(duì)稱軸為x=-a;
∴當(dāng)-a≥5,即a≤-5時(shí),f(x)圖象在對(duì)稱軸的左側(cè),函數(shù)是減函數(shù);
當(dāng)-a≤-5,即a≥5時(shí),f(x)圖象在對(duì)稱軸的右側(cè),函數(shù)是增函數(shù);
所以f (x)在區(qū)間[-5,5]上是單調(diào)函數(shù)時(shí),a的取值范圍是:{a|a≤-5,或a≥5}.
(Ⅲ)當(dāng)-a≤-5,即a≥5時(shí),函數(shù)f(x)在[-5,5]上是增函數(shù),
∴
,不滿足條件;
當(dāng)-5<-a≤0,即0≤a<5時(shí),函數(shù)f(x)在[-5,5]上是先減后增,
∴
,∴a=1;
當(dāng)0<-a<5,即-5<a<0時(shí),函數(shù)f(x)在[-5,5]上也是先減后增,
∴
,∴a=-1;
當(dāng)-a≥5,即a≤-5時(shí),函數(shù)f(x)在[-5,5]上是減函數(shù),
∴
,不滿足條件;
綜上,所求實(shí)數(shù)a的值為:a=±1.
分析:(I)由f(x)是偶函數(shù),知f(-x)=f(x) 對(duì)任意x成立,可得a的值;
(Ⅱ)由f(x)的圖象是拋物線,且開口向上,區(qū)間[-5,5]在對(duì)稱軸一側(cè)時(shí)為單調(diào)函數(shù),從而得a的取值范圍;
(Ⅲ)根據(jù)f(x)在區(qū)間[-5,5]上的單調(diào)性,討論f(x)在[-5,5]上的最值,從而求得a的值.
點(diǎn)評(píng):本題考查了二次函數(shù)在閉區(qū)間上的單調(diào)性與最值問(wèn)題,當(dāng)二次函數(shù)圖象的對(duì)稱軸不確定時(shí),需要討論對(duì)稱軸在區(qū)間內(nèi)、還是區(qū)間外.