曲線y1=2-x2與y2x3-2(x>0)在交點(diǎn)處切線的夾角是_________(以弧度作答)

答案:
解析:

  答案:

  解析:先求出曲線的交點(diǎn)橫坐標(biāo),然后求函數(shù)的導(dǎo)函數(shù),再求切線的斜率,最后用夾角公式求出夾角.

  聯(lián)立求得交點(diǎn)橫坐標(biāo)x1=2,x2=-2,x3=-4(舍負(fù))

  由y1=2-21=-x

  由y2x3-2得2x2

  當(dāng)x1=2,則k1=-2,k2=3,tanα=||=1

  所以兩條切線的夾角為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(國標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

設(shè)P0(x0,y0)為曲線C:y=x2(x>0)上的點(diǎn),過P0作曲線C的切線與x軸交于點(diǎn)Q1,過Ql作平行于y軸的直線與曲線C交于點(diǎn)P1(xl,y1),然后再過P1作曲線C的切線交x軸于點(diǎn)Q2,過Q2作平行于y軸的直線與曲線C交于點(diǎn)P2(x2,y2),依此類推,作出以下各點(diǎn):P0,Q1,P1,Q2,P2,Q3,…,Pn,Qn+l,….已知x0=2,設(shè)Pn坐標(biāo)為(xn,yn)(n∈N).

(1)求出過點(diǎn)P0的切線的方程;

(2)設(shè)xnf(n),求f(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:044

設(shè)C:y=x2(x>0)上的點(diǎn)為P0(x0,y0),過P0作曲線C的切線與x軸交于Q1,過Q1作平行于y軸的直線與曲線C交于P1(x1,y1),然后再過P1作曲線C的切線與x軸交于Q2,過Q2作平行于y軸的直線與曲線C交于P2(x2,y2),依次類推,作出以下各點(diǎn):Q3,P3,…,Pn,Qn+1,….已知x0=2,設(shè)Pn(xn,yn)(n∈N).

(1)設(shè)xn=f(n),求f(n)的表達(dá)式;

(2)求g(n)=;

(3)設(shè)Sn=[g(n)-4]log2f(n).若n>2,求證:-1≤<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年高考預(yù)測卷數(shù)學(xué)科(一)新課標(biāo) 題型:013

已知函數(shù)y=x3+x2+x的圖像C上存在一定點(diǎn)P滿足:若過點(diǎn)p的直線l與曲線C交于不同于P的兩點(diǎn)M(x1,y1),N(x2,y2),就恒有y1+y2為定值y0,則y0的值為

[  ]

A.

B.

C.

D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:福建省師大附中2012屆高三高考模擬數(shù)學(xué)理科試題 題型:044

如下圖,過曲線C:y=ex上一點(diǎn)P0(0,1)作曲線C的切線l0交x軸于點(diǎn)Q1(x1,0),又過Q1作x軸的垂線交曲線C于點(diǎn)P1(x1,y1),然后再過P1(x1,y1)作曲線C的切線l1交x軸于點(diǎn)Q2(x2,0),又過Q2作x軸的垂線交曲線C于點(diǎn)P2(x2,y2),…,以此類推,過點(diǎn)Pn的切線ln與x軸相交于點(diǎn)Qn+1(xn+1,0),再過點(diǎn)Qn+1作x軸的垂線交曲線C于點(diǎn)Pn+1(xn+1,yn+1)(n∈N*).

(1)求x1、x2及數(shù)列{xn}的通項(xiàng)公式;

(2)設(shè)曲線C與切線ln及直線Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達(dá)式;(3)在滿足(2)的條件下,若數(shù)列{Sn}的前n項(xiàng)和為Tn,求證:N*

查看答案和解析>>

同步練習(xí)冊(cè)答案