已知|
a
|
=1,|
b
|
=2,
a
b
的夾角為120°,
a
+
b
+
c
=0,則
a
c
的夾角為( 。
分析:由已知,得出
c
=-(
a
+
b
),利用向量的運(yùn)算法則,求出
a
c
,再結(jié)合數(shù)量積公式求夾角.
解答:解:∵
a
+
b
+
c
=0,∴
c
=-(
a
+
b
),
a
c
=-
a
•(
a
+
b
)=-
a
2
-
a
b
=-1-1×2×(-
1
2
)=0,
所以
a
c
,夾角為90°.
故選B.
點(diǎn)評(píng):本題考查向量數(shù)量積公式的應(yīng)用:求向量夾角.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1
,|
b
|=
2
a
⊥(
a
-
b
)
,則向量
a
與向量
b
的夾角是( 。
A、30°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a|
=1
|
b
|=2
,
a
⊥(
a
+
b
)
,則
a
b
夾角的度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=
3
,且
a
,
b
的夾角為
π
6
,則|
a
-
b
|的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=1,|
b
|=2
,向量
a
b
的夾角為
3
,
c
=
a
+2
b
,則
c
的模等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=1,b=2.
(1)若sin
A
2
=
1
4
,求sinB的值;
(2)若cosC=
1
4
,求△ABC的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案