(滿分14分)設(shè)函數(shù)
(1)設(shè)曲線在點(diǎn)(1,)處的切線與x軸平行.
① 求的最值;
② 若數(shù)列滿足(為自然對數(shù)的底數(shù)),,
求證: .
(2)設(shè)方程的實(shí)根為.
求證:對任意,存在使成立.
解:(1)①的最小值為。無最大值;②見解析;(2)見解析.
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。求解函數(shù)的單調(diào)性和導(dǎo)數(shù)幾何意義的運(yùn)用,以及不等式的證明的綜合問題
(1)第一問利用已知條件得打參數(shù)m的值,然后求解導(dǎo)數(shù)。判定其單調(diào)性,求解函數(shù)的單調(diào)區(qū)間,從而得到最值和放縮法得到不等式的證明
(2)第二問中運(yùn)用函數(shù)與方程思想,來分析方程的解的問題。并構(gòu)造函數(shù)來證明不等式 成立。
解:(1)由已知,
①。當(dāng)時(shí)
當(dāng)時(shí)。則在(0,1)上是減函數(shù),在上是增函數(shù)。的最小值為。無最大值..............................4'
②(當(dāng)且僅當(dāng)時(shí)取到等號)
即且
即
則。又
即
則故不等式成立。...........9'
(2)設(shè)故在上遞增。
又
所以方程即在上有唯一根且而不等式
不妨設(shè)
設(shè)
設(shè)集合
即存在成立。
那么不等式也成立
故對任意使得成立...14'
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)設(shè)函數(shù)
(I)求函數(shù)的最小正周期及函數(shù)的單調(diào)遞增區(qū)間 ; (II)若,是否存在實(shí)數(shù)m,使函數(shù)?若存在,請求出m的取值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)函數(shù)在上是增函數(shù).求正實(shí)數(shù)的取值范圍;
設(shè),求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)函數(shù)的圖象與x軸相交于一點(diǎn),且在點(diǎn)處的切線方程是
(I)求t的值及函數(shù)的解析式;
(II)設(shè)函數(shù)
(1)若的極值存在,求實(shí)數(shù)m的取值范圍。
(2)假設(shè)有兩個(gè)極值點(diǎn)的表達(dá)式并判斷是否有最大值,若有最大值求出它;若沒有最大值,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省珠海市高三第一次月考理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)設(shè)函數(shù),其中
(Ⅰ)當(dāng)判斷在上的單調(diào)性.
(Ⅱ)討論 的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣州市高二第二學(xué)期期末考試數(shù)學(xué)(文)試題 題型:解答題
(本題滿分14分)
設(shè)函數(shù),,當(dāng)時(shí),取得極值。
(Ⅰ)求的值;
(Ⅱ)當(dāng)時(shí),函數(shù)與的圖象有三個(gè)公共點(diǎn),求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com