【題目】給出下列命題:

①線性相關系數(shù)越大,兩個變量的線性相關性越強;反之,線性相關性越弱;

②用來刻畫回歸效果,越大,說明模型的擬合效果越好;

③根據列聯(lián)表中的數(shù)據計算得出的的值越大,兩類變量相關的可能性就越大;

④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;

⑤從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣.

其中真命題的序號是_______

【答案】②③④

【解析】

根據“殘差”的意義線性相關系數(shù)和相關指數(shù)的意義等統(tǒng)計學知識,逐項判斷,即可作出正確的判斷.

對①,根據線性相關系數(shù)的絕對值越接近,兩個變量的線性相關性越強;反之,線性相關性越弱,故①錯誤;

對②,根據用相關指數(shù)刻畫回歸的效果時, 的值越大說明模型的擬合效果就越好,故②正確;

對③,2×2列聯(lián)表中的數(shù)據計算得出的越大,“有關系”可信程度越大,相關性就越大,故③正確;

對④,根據比較模型的擬合效果,可以比較殘差平方和的大小,殘差平方和越小的模型,擬合效果就越好,故④正確;

對⑤,新產品沒有明顯差異,抽取時間間隔相同,故屬于系統(tǒng)抽樣,故⑤錯誤.

綜上所述,正確的是②③④.

故答案為:②③④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,,,的中點.

(1)證明:

(2),點在平面的射影在上,且與平面所成角的正弦值為,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位為了響應疫情期間有序復工復產的號召,組織從疫區(qū)回來的甲、乙、丙、丁4名員工進行核酸檢測,現(xiàn)采用抽簽法決定檢測順序,在員工甲不是第一個檢測,員工乙不是最后一個檢測的條件下,員工丙第一個檢測的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新高考改革后,國家只統(tǒng)一考試數(shù)學和語文,英語學科改為參加等級考試,每年考兩次,分別放在每個學年的上、下學期,物理、化學、生物、地理、歷史、政治這六科則以該省的省會考成績?yōu)闇?/span>.考生從中選擇三科成績,參加大學相關院系的錄取.

1)若英語等級考試成績有一次為優(yōu),即可達到某211院校的錄取要求.假設某個學生參加每次等級考試事件是獨立的,且該生英語等級考試成績?yōu)閮?yōu)的概率都是,求該生在高二上學期的英語等級考試成績才為優(yōu)的概率;

2)據預測,要想報考該211院校的相關院系,省會考的成績至少在90分以上,才有可能被該校錄取.假設該生在省會考六科的成績,考到90分以上概率都是,設該生在省會考時考到90分以上的科目數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在研究吸煙與患肺癌的關系中,通過收集數(shù)據、整理分析數(shù)據得吸煙與患肺癌有關的結論,并且在犯錯誤的概率不超過0.01的前提下認為這個結論是成立的,下列說法中正確的是(

A.100個吸煙者中至少有99人患有肺癌

B.1個人吸煙,那么這個人有99%的概率患有肺癌

C.100個吸煙者中一定有患肺癌的人

D.100個吸煙者中可能一個患肺癌的人也沒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市一調查機構針對該市市場占有率最高的甲、乙兩家網絡外賣企業(yè)以下簡稱外賣甲,外賣乙的經營情況進行了調查,調查結果如表:

日期

第1天

第2天

第3天

第4天

第5天

外賣甲日接單x(百單

5

2

9

8

11

外賣乙日接單y(百單

2.2

2.3

10

5

15

(Ⅰ)據統(tǒng)計表明,yx之間具有線性相關關系.經計算求得yx之間的回歸方程為,假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍;(x值精確到0.01)

(Ⅱ)試根據表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經營狀況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列選項中,說法正確的是(

A.命題,的否定為,;

B.命題中,,則的逆否命題為真命題;

C.已知、m是兩條不同的直線,是個平面,若,則;

D.已知定義在R上的函數(shù),則為奇函數(shù)的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了冰雪答題王冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,得到如圖所示的頻率分布直方圖.

1)求的值;

2)記表示事件從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于,估計的概率;

3)在抽取的名學生中,規(guī)定:比賽成績不低于分為優(yōu)秀,比賽成績低于分為非優(yōu)秀.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為比賽成績是否優(yōu)秀與性別有關?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產100件產品,且每生產1件正品可獲利20元,生產1件次品損失30元,甲、乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產的次品數(shù)/件

0

1

2

3

4

對應的天數(shù)/天

40

20

20

10

10

乙每天生產的次品數(shù)/件

0

1

2

3

對應的天數(shù)/天

30

25

25

20

(1)將甲每天生產的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關系式;

(2)按這100天統(tǒng)計的數(shù)據,分別求甲、乙兩名工人的平均日利潤.

查看答案和解析>>

同步練習冊答案