設(shè)ABCD是矩形,沿對角線BD將△BDC折起,使C點(diǎn)在底面DAB內(nèi)的射影H恰好落在AB邊上(如圖).

  

(1)求證:平面ABC⊥平面ACD;

(2)求證:平面DBC⊥平面ACD;

(3)如果AD∶AB=1∶,試求二面角C-AD-B的正弦值.

答案:
解析:

  (1)AB為直線BC在平面ABD內(nèi)的射影,而AD⊥AB(已知),由三垂線定理,得AD⊥BC,又由已知有BC⊥CD,

  ∴BC⊥平面ACD,BC平面ABC.

  ∴面ABC⊥面ACD.

  (2)BC平面DBC ∴平面DBC⊥平面ACD.

  (3)AH為AC在平面ACD的射影,又AH⊥AD ∴AC⊥AD.

  從而∠CAH為二面角C-AD-B的平面角.

  設(shè)AD=a,AB=a,則DC=a.

  在Rt△ACD中,AC=,又BC⊥平面ACD

  ∴BC⊥AC ∴sin∠CAH=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)二模)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=0.5米.上部CmD是個(gè)半圓,固定點(diǎn)E為CD的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿(MN和AB、DC不重合).
(1)當(dāng)MN和AB之間的距離為1米時(shí),求此時(shí)三角通風(fēng)窗EMN的通風(fēng)面積;
(2)設(shè)MN與AB之間的距離為x米,試將三角通風(fēng)窗EMN的通風(fēng)面積S(平方米)表示成關(guān)于x的函數(shù)S=f(x);
(3)當(dāng)MN與AB之間的距離為多少米時(shí),三角通風(fēng)窗EMN的通風(fēng)面積最大?并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•靜安區(qū)一模)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市靜安區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點(diǎn)E為AB的中點(diǎn).△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和AB平行的伸縮橫桿.
(1)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(2)求△EMN的面積S(平方米)的最大值.

查看答案和解析>>

同步練習(xí)冊答案