(本題9分)函數(shù)
(Ⅰ)判斷并證明的奇偶性;
(Ⅱ)求證:在定義域內(nèi)恒為正。

(Ⅰ)是偶函數(shù)。(Ⅱ)根據(jù)奇偶性,只需證明時,函數(shù)。

解析試題分析:(Ⅰ)判斷:是偶函數(shù)。                  1分
證明:的定義域為關(guān)于原點對稱                    1分
對于任意



,所以是偶函數(shù)。             3分
(Ⅱ)當(dāng)時,,所以             2分
又因為是偶函數(shù),
所以當(dāng)時,也成立。                2分
綜上,在定義域內(nèi)恒為正。
考點:函數(shù)的性質(zhì):奇偶性。
點評:判斷一個函數(shù)的奇偶性有兩步:①求函數(shù)的定義域,判斷函數(shù)的定義域關(guān)于原點對稱;②判斷的關(guān)系。尤其是做大題時不要忘記求函數(shù)的定義域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若對任意的,,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(11分)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為組成數(shù)對(,并構(gòu)成函數(shù)
(Ⅰ)寫出所有可能的數(shù)對(,并計算,且的概率;
(Ⅱ)求函數(shù)在區(qū)間[上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)滿足什么條件時,函數(shù)在區(qū)間上單調(diào)遞增?
(Ⅲ)若圖象上任意一點,直線與的圖象切于點P,求直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù).
(1)設(shè)的定義域為A,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
定義在上的函數(shù),對于任意的實數(shù),恒有,且當(dāng)時,。
(1)求的值域。
(2)判斷上的單調(diào)性,并證明。
(3)設(shè),,求的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對于區(qū)間上的每一個值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f (x)=loga(a>0,a≠1).
(1)求函數(shù)f (x)的定義域.
(2)求使f (x)>0的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案