已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比關系,Sn為{an}的前n項和,則的值為( )
A.2
B.3
C.
D.不存在
【答案】分析:根據(jù)此數(shù)列為等差數(shù)列,由a1,a3,a4成等比關系得到a32=a1a4,然后利用等差數(shù)列的通項公式化簡根據(jù)d不等于0得到關于a1和d的關系式,并用含d的代數(shù)式表示出a1,把所求的式子利用等差數(shù)列的性質化簡后,把關于a1的代數(shù)式代入即可求出值.
解答:解:因為{an}為等差數(shù)列,由a1,a3,a4成等比關系,得到a32=a1a4即(a1+2d)2=a1(a1+3d),
化簡得d(a1+4d)=0由d≠0得到a1+4d=0,所以a1=-4d即a5=0,
====2
故選A.
點評:考查學生掌握等差數(shù)列的通項公式及前n項和的公式,靈活運用等差數(shù)列的性質解決實際問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,且滿足S5=3a5-2,又a1,a2,a5依次成等比數(shù)列,數(shù)列{bn}滿足b1=-9,bn+1=bn+
k
2
an+1
2
,(n∈N+)其中k為大于0的常數(shù).
(1)求數(shù)列{an},{bn}的通項公式;
(2)記數(shù)列an+bn的前n項和為Tn,若當且僅當n=3時,Tn取得最小值,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)二模)已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S3=a4+6,且a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{
1Sn
}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知公差不為0的等差數(shù)列{an}滿足a1,a3,a4成等比數(shù)列,Sn為{an}的前n項和,則
S2-S1
S3-S2
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃州區(qū)模擬)已知公差不為0的等差數(shù)列{an}的前3項和S3=9,且a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式和前n項和Sn
(2)設Tn為數(shù)列{
1anan+1
}的前n項和,若Tn≤λan+1對一切n∈N*恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項a1=a,a∈N*,設數(shù)列的前n項和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,若A2011=
2011
2012
,求a的值.

查看答案和解析>>

同步練習冊答案