精英家教網 > 高中數學 > 題目詳情
若函數f(x)=(
x
2
 
-2x)
e
x
 
的最小值是f(x0),則x0值為
2+
6
2+
6
分析:求導函數,確定函數的單調性,從而可確定函數的極值與最值,即可得到結論.
解答:解:求導函數,可得f′(x)=(x2-4x-2)ex
令f′(x)>0,可得x>2+
6
或x<2-
6
;令f′(x)<0,可得2-
6
<x<2+
6
,
∴函數的單調增區(qū)間為(-∞,2-
6
),(2+
6
,+∞),單調減區(qū)間為(2-
6
,2+
6

∴函數在x=2+
6
處取得極小值,且為最小值
∵函數f(x)=(
x
2
 
-2x)
e
x
 
的最小值是f(x0),
∴x0=2+
6

故答案為:2+
6
點評:本題考查導數知識的運用,考查函數的單調性與最值,解題的關鍵是利用導數確定函數的單調性.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)滿足條件:當x1,x2∈[-1,1]時,有|f(x1)-f(x2)|≤3|x1-x2|成立,則稱f(x)∈Ω.對于函數g(x)=x3,h(x)=
1
x+2
,有( 。
A、g(x)∈Ω且h(x)∉Ω
B、g(x)∉Ω且h(x)∈Ω
C、g(x)∈Ω且h(x)∈Ω
D、g(x)∉Ω且h(x)∉Ω

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

若函數 f(x)=ax (a>0,a≠1 ) 的部分對應值如表:

則不等 式f-1(│x│<0)的解集是       


  1. A.
    {x│-1<x<1}
  2. B.
    {x│x<-1或x>1}
  3. C.
    {x│0<x<1}
  4. D.
    {x│-1<x<0或0<x<1}

查看答案和解析>>

科目:高中數學 來源:徐州模擬 題型:解答題

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案