已知f(x)是定義在R上的函數(shù),f(1)=1且對任意x∈R都有:f(x+5)≥f(x)+5與f(x+1)≤f(x)+1成立,若g(x)=f(x)+1-x,則g(2002)=
1
1
分析:因?yàn)楹瘮?shù)f(x)和g(x)都沒給出解析式,所以求解g(2002)只能依靠f(1),由g(x)=f(x)+1-x可求出g(1),問題變成了求函數(shù)g(x)的周期問題,先把g(x)=f(x)+1-x變形得到g(x)+x-1=f(x),然后把x+5和x+1兩次代入此式,借助于f(x+5)≥f(x)+5與f(x+1)≤f(x)+1變換得到函數(shù)g(x)的周期,則問題可求.
解答:解:由g(x)=f(x)+1-x得g(x)+x-1=f(x)
∴g(x+5)+(x+5)-1=f(x+5)≥f(x)+5=g(x)+(x-1)+5
g(x+1)+(x+1)-1=f(x+1)≤f(x)+1=g(x)+(x-1)+1
∴g(x+5)≥g(x),g(x+1)≤g(x)
∴g(x)≤g(x+5)≤g(x+4)≤g(x+3)≤g(x+2)≤g(x+1)
∴g(x+1)=g(x)
∴T=1
∵g(1)=f(1)+1-1=1
∴g(2002)=1
故答案為1.
點(diǎn)評:本題考查了函數(shù)的周期性,訓(xùn)練了抽象函數(shù)的靈活代換和變換方法,解答此題的關(guān)鍵在于一個(gè)“變”字,考查了學(xué)生的應(yīng)變能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案