((本小題滿分12分)
若圖為一簡單組合體,其底面ABCD為正方形,PD平面ABCD,EC//PD,且PD=2EC。

(1)求證:BE//平面PDA;
(2)若N為線段PB的中點,求證:EN平面PDB;
(3)若,求平面PBE與平面ABCD所成的二面角的大小。
(1)     證明:EC∥PD∴EC∥面PAD;同理BC∥面PAD;∴面BEC∥面PAD;∴BE∥面PAD
(2)     證明:取BD的中點O,連NO、CO,易知,CO⊥BD;又∵CO⊥PD; ∴CO⊥面PBD。
(3)     建立如圖的空間直角坐標系,令EC=1,則PD=
D(0,0,0);P(0,0,2);B(,,0);D(0,,1);
面ABCD的法向量==(0,0,2)
令面PBE的法向量=(x,y,z),則;則=(1,1,
∴cos=;∴=
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=3,點D是AB的中點.
(Ⅰ)求證:
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,,,的中點,以為折痕將向上折起,使 為,且平面平面 

(Ⅰ)求證:;
(Ⅱ)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
已知,,,求點的坐標,使四邊形為直角梯形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用一個平面去截正方體。其截面是一個多邊形,則這個多邊形的邊數(shù)最多是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知結論:“在三邊長都相等的中,若的中點,外接圓的圓心,則”.若把該結論推廣到空間,則有結論:“在六條棱長都相等的四面體中,若的三邊中線的交點,為四面體外接球的球心,則           ”

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在正方體中,直線和直線所成的角的大小為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(空間三條直線互相平行,由每兩條平行線確定一個平面,則可確定平面的個數(shù)為( )
A.3B.1或2C.1或3D.2或3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(本小題滿分12分)
如圖,在正方體中,分別是、中點
(1)求證:;
(2)求證:
(3)棱上是否存在點,使平面,若存在,確                     定點位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案