【題目】在四棱錐中,平面,,,,,與平面所成的角是,是的中點(diǎn),在線段上,且滿足.
(1)求二面角的余弦值;
(2)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在滿足條件的點(diǎn),理由見解析.
【解析】
(1)首先根據(jù)與平面所成的角是得到,以為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,根據(jù)得到,.
再分別求出平面的法向量和平面的法向量,帶入二面角公式即可.
(2)設(shè),,利用向量法求出與平面所成角的正弦值,再解方程即可.
(1)因?yàn)?/span>平面,所以為與平面所成的角.
即,,所以.
以為坐標(biāo)原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,
,,,,設(shè).
,,
因?yàn)?/span>,所以,解得,.
設(shè)平面的法向量為,
又,.
所以,令,得到.
設(shè)平面的法向量為,
又,.
所以,令,得到.
所以.
又由圖可知,該二面角為銳角,故二面角的余弦值為.
(2)
因?yàn)?/span>,,設(shè),.
所以,.
由(1)知平面的法向量為,
所以
又因?yàn)?/span>與平面所成角的余弦值是
所以其正弦值為,即
整理得:或(舍去)
所以存在滿足條件的點(diǎn),,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)已知橢圓()的半焦距為,原點(diǎn)到經(jīng)過兩點(diǎn),的直線的距離為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點(diǎn),求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)A(0,﹣1),B(0,1),直線PA,PB相交于點(diǎn)P,且它們的斜率之積是,記點(diǎn)P軌跡為C.
(1)求曲線C的軌跡方程;
(2)直線l與曲線C交于M,N兩點(diǎn),若|AM|=|AN|,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,直線與的兩個(gè)交點(diǎn)間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過作滿足,設(shè)與的上半部分分別交于兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,
求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計(jì) | |
南方學(xué)生 | 60 | 20 | 80 |
北方學(xué)生 | 10 | 10 | 20 |
合計(jì) | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),問是否有的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 100 |
且已知在100個(gè)人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由.
參考公式與臨界值表:.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,地球上的水資源有限,愛護(hù)地球、節(jié)約用水是我們每個(gè)人的義務(wù)與責(zé)任.某市政府為了對(duì)自來(lái)水的使用進(jìn)行科學(xué)管理,節(jié)約水資源,計(jì)劃確定一個(gè)家庭年用水量的標(biāo)準(zhǔn).為此,對(duì)全市家庭日常用水量的情況進(jìn)行抽樣抽查,獲得了個(gè)家庭某年的用水量(單位:立方米),統(tǒng)計(jì)結(jié)果如下表及圖所示.
分組 | 頻數(shù) | 頻率 |
25 | ||
0.19 | ||
50 | ||
0.23 | ||
0.18 | ||
5 |
(1)分別求出,的值;
(2)若以各組區(qū)間中點(diǎn)值代表該組的取值,試估計(jì)全市家庭年均用水量;
(3)從樣本中年用水量在(單位:立方米)的5個(gè)家庭中任選3個(gè),作進(jìn)一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個(gè)家庭的年用水量都不相等).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都乘以2,再減去80,得到一組新數(shù)據(jù),若求得新的數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來(lái)數(shù)據(jù)的平均數(shù)和方差分別是( )
A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com