【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)為 ,且離心率
(1)求橢圓的方程;
(2)求以點(diǎn)P(2,﹣1)為中點(diǎn)的弦所在的直線方程.

【答案】
(1)解:∵橢圓的中心在原點(diǎn),焦點(diǎn)為 ,且離心率 ,

,解得a=4,c=2 ,b=2,

∴橢圓方程為


(2)解:設(shè)以點(diǎn)P(2,﹣1)為中點(diǎn)的弦與橢圓交于點(diǎn)A(x1,y1),B(x2,y2),

則x1+x2=4,y1+y2=﹣2,

,兩式相減,并整理,得4(x1﹣x2)﹣8(y1﹣y2)=0,

∴k= = ,

∴以點(diǎn)P(2,﹣1)為中點(diǎn)的弦所在的直線方程為:

y+1= (x﹣2),即x﹣2y﹣4=0


【解析】(1)由橢圓的焦點(diǎn)和離心率列出方程組,求出a,b,由此能求出橢圓方程.(2)設(shè)以點(diǎn)P(2,﹣1)為中點(diǎn)的弦與橢圓交于點(diǎn)A(x1 , y1),B(x2 , y2),則x1+x2=4,y1+y2=﹣2,由此利用點(diǎn)差法能求出以點(diǎn)P(2,﹣1)為中點(diǎn)的弦所在的直線方程.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=cos(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的奇函數(shù),且在區(qū)間(0,+∞)單調(diào)遞增,若f(﹣2)=0,則不等式xf(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,側(cè)面ABC是一個等腰直角三角形,∠BAC=90°,底面BCD是一個等邊三角形,平面ABC⊥平面BCD,E為BD的中點(diǎn),則AE與平面BCD所成角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形草坪AMPN中,點(diǎn)C在對角線MN上.CD垂直于AN于點(diǎn)D,CB垂直于AM于點(diǎn)B,|CD|=|AB|=3米,|AD|=|BC|=2米,設(shè)|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AA1=AB=AC,BC= AB,且AA1⊥平面ABC,點(diǎn)M、Q分別是BC、CC1的中點(diǎn),點(diǎn)P是棱A1B1上的任一點(diǎn).

(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ= ,試確定點(diǎn)P在棱A1B1上的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式組 表示的平面區(qū)域?yàn)镸,直線y=kx﹣1與區(qū)域M沒有公共點(diǎn),則實(shí)數(shù)k的最大值為(
A.3
B.0
C.﹣3
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>0,b>0)上的點(diǎn)P到左、右兩焦點(diǎn)F1 , F2的距離之和為2 ,離心率為
(1)求橢圓的方程;
(2)是否存在同時滿足①②兩個條件的直線l?
①過點(diǎn)M(0, );
②存在橢圓上與右焦點(diǎn)F2共線的兩點(diǎn)A、B,且A、B關(guān)于直線l對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,E為棱SC的中點(diǎn),若AC=2 ,SA=SB=AB=BC=SC=2,則異面直線AC與BE所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

同步練習(xí)冊答案