把公差為2的等差數(shù){an}的各項依次插入等比數(shù){bn}中,{bn}按原順序分成1項,2項,4項,…2n-1項的各組,得到數(shù)列{cn}:b1,a1,b2,b3,a2,b4,b5,b6,b7,a3,…,數(shù)列{cn}的前n項的和sn.若c1=1,c2=2,S3=
13
4
.則數(shù){cn}的前100項之和S100=______.
由題意可得c1=b1=1,c2=a1=2,S3=1+2+b2=
13
4

b2=
1
4
,公比q=
1
4

∴an=2+2(n-1)=2n,bn=
1
4n-1

∴S100=b1+a1+b2+b3+a2+…+a6+b64+…+b94
=(a1+…+a6)+(b1+b2+…+b94
=42+
1- 
1
494
1-
1
4
=
1
3
[130-(
1
2
)
186
]

故答案為:
1
3
[130-(
1
2
)
186
 ]
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

把公差為2的等差數(shù){an}的各項依次插入等比數(shù){bn}中,{bn}按原順序分成1項,2項,4項,…2n-1項的各組,得到數(shù)列{cn}:b1,a1,b2,b3,a2,b4,b5,b6,b7,a3,…,數(shù)列{cn}的前n項的和sn.若c1=1,c2=2,S3=
13
4
.則數(shù){cn}的前100項之和S100=
1
3
[130-(
1
2
)
186
]
1
3
[130-(
1
2
)
186
]

查看答案和解析>>

同步練習冊答案