【題目】解下列不等式
(1)2x2﹣3x+1<0
(2) ≥1.

【答案】
(1)解:2x2﹣3x+1<0 等價于(2x﹣1)(x﹣1)<0,所以不等式的解集為{x| <x<1};
(2)解:不等式等價于 0,即(x﹣1)(x+1)≥0且x+1≠0,所以不等式的解集為{x|x≥1或x<﹣1}.
【解析】(1)利用分解法解不等式;(2)移項通分,化為整式不等式解之.
【考點精析】通過靈活運用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的圖象的一條對稱軸方程是(
A.x=
B.x=
C.x=π
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)f(x)=ax2+bx+c(a>0,c>0)的圖象與x軸有兩個不同的公共點,其中一個公共點的坐標為(c,0),且當0<x<c時,恒有f(x)>0.
(1)當a=1, 時,求出不等式f(x)<0的解;
(2)求出不等式f(x)<0的解(用a,c表示);
(3)若以二次函數(shù)的圖象與坐標軸的三個交點為頂點的三角形的面積為8,求a的取值范圍;
(4)若不等式m2﹣2km+1+b+ac≥0對所有k∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設(shè)f(x)的定義域為[0,3],值域為A; g(x)的定義域為[0,3],值域為B,且AB,求實數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<0,關(guān)于x的一元二次不等式ax2﹣(2+a)x+2>0的解集為(
A.{x|x< 或x>1}
B.{x| <x<1}
C.{x|x<1或x> }
D.{x|1<x< }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函數(shù)g(x)的值域;
(2)若函數(shù)y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在區(qū)間[ ,π]上為增函數(shù),求實數(shù)ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中真命題的個數(shù)為(
①命題“若lgx=0,則x=l”的逆否命題為“若lgx≠0,則x≠1”
②若“p∧q”為假命題,則p,q均為假命題
③命題p:x∈R,使得sinx>l;則¬p:x∈R,均有sinx≤1
④“x>2”是“ ”的充分不必要條件.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如表:(單位:人)

幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50


(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5﹣7分鐘,乙每次解答一道幾何題所用的時間在6﹣8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
附表及公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊的長分別為a、b、c,設(shè)向量 =(a﹣c,a﹣b), =(a+b,c),且 ,
(1)求B;
(2)若a=1,b= ,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案