已知函數(shù)f(x)=|x-a|及g(x)=x2+2ax+1(a>0且a為常數(shù)),且函數(shù)f(x)及g(x)的圖象與y軸交點(diǎn)的縱坐標(biāo)相等.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)F(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.
分析:(Ⅰ)由題意得:f(0)=g(0),即|a|=1,可得a=1.
(Ⅱ)由(I)可得:F(x)=f(x)+g(x)=|x-1|+x2+2x+1,分段討論:當(dāng)x≥1時(shí)與當(dāng)x<1時(shí),F(xiàn)(x)的單調(diào)性,再結(jié)合函數(shù)的解析式證明函數(shù)在整個(gè)區(qū)間內(nèi)單調(diào).
解答:解:(Ⅰ)由題意得:f(0)=g(0),
即|a|=1,
又因?yàn)閍>0,
所以a=1.
(Ⅱ)由(I)可得:F(x)=f(x)+g(x)=|x-1|+x
2+2x+1
①當(dāng)x≥1時(shí),F(xiàn)(x)=(x-1)+x
2+2x+1=x
2+3x=
(x+)2-,
所以根據(jù)二次函數(shù)的現(xiàn)在可得:F(x)在[1+∞)在上單調(diào)遞增.
②當(dāng)x<1時(shí),F(xiàn)(x)=-(x-1)+x
2+2x+1
,
所以根據(jù)二次函數(shù)的現(xiàn)在可得:F(x)在
[-,1)上單調(diào)遞增.
因?yàn)楫?dāng)x=1時(shí),F(xiàn)(x)=4;當(dāng)x<1時(shí),F(xiàn)(x)<4,
所以F(x)在
[-,+∞)上單調(diào)遞增.
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握分段函數(shù)單調(diào)性的判斷與單調(diào)區(qū)間的求解.