(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對任意的成立,則稱函數(shù)為上的“k階收縮函數(shù)”
(1)若,試寫出,的表達式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對應(yīng)的k,如果不是,請說明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍
解:(1)由題意可得:,。
(2),,
當(dāng)時,
當(dāng)時,
當(dāng)時,
綜上所述,。
即存在,使得是[-1,4]上的“4階收縮函數(shù)”。
(3),令得或。
函數(shù)的變化情況如下:
x |
0 |
2 |
|||
- |
0 |
+ |
0 |
- |
|
0 |
4 |
令得或。
(i)當(dāng)時,在上單調(diào)遞增,因此,,。因為是上的“二階收縮函數(shù)”,所以,
①對恒成立;
②存在,使得成立。
①即:對恒成立,由解得或。
要使對恒成立,需且只需。
②即:存在,使得成立。
由解得或。
所以,只需。
綜合①②可得。
(i i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,
因此,,,,
顯然當(dāng)時,不成立。
(i i i)當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,因此,,,,
顯然當(dāng)時,不成立。
綜合(i)(i i)(i i i)可得:
【解析】略
科目:高中數(shù)學(xué) 來源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題
(本小題14分)已知函數(shù).
(1)若,點P為曲線上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)在上為單調(diào)增函數(shù),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為1.
⑴ 求此二次函數(shù)的解析式;
⑵ 若函數(shù)的定義域為= .(其中). 問是否存在這樣的兩個實數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分)已知函數(shù)
(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(Ⅱ)如果當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(Ⅲ)求證:,…….
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(實驗班) 題型:解答題
(本小題14分)已知函數(shù)f(x)=,x∈[1,+∞
(1)當(dāng)a=時,求函數(shù)f(x)的最小值
(2)若對任意x∈[1,+∞,f(x)>0恒成立,試求實數(shù)a的取值范圍
(3)求f(x)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題
(本小題14分)
已知函數(shù).
(Ⅰ)若,求曲線在處切線的斜率;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com