已知復數(shù)z1=sin2x+λi,,且z1=z2
(1)若λ=0且0<x<π,求x的值;
(2)設λ=f(x),求f(x)的最小正周期和單調減區(qū)間.
【答案】分析:(1)由復數(shù)相等的充要條件得到關于X的三角函數(shù)形式,根據(jù)所給的自變量的取值范圍,得到結果.
(2)整理出關于X的三角函數(shù)形式,后面的問題就變成三角函數(shù)的有關性質的運算,求周期和單調區(qū)間,實際上,題目做到這里,它可以解決所有的三角函數(shù)性質問題.
解答:解:(1)∵Z1=Z2
∴sin2x=m,

λ=0,
∴sin2x-cos2x=0,

∵0<x<π

(2)∵
=2sin(2x-
∴函數(shù)的最小正周期是π
由2kπ+(k∈Z)
得k
∴f(x)的單調減區(qū)間[k.(K∈Z)
點評:在三角函數(shù)單調性運算時,要把三角函數(shù)經(jīng)過恒等變形得到可以求解有關性質的形式,這兩者結合同三角函數(shù)與向量結合一樣.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=cosθ-i,z2=sinθ+i,則z1•z2的實部最大值為
 
,虛部最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=cosα+isinα,z2=cosβ+isinβ,|z1-z2|=
2
5
5

求:(1)求cos(α-β)的值;
(2)若-
π
2
<β<0<α<
π
2
,且sinβ=-
5
13
,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2cosα+(2sinα)i,z2=cosβ+(sinβ)i(α,β∈R),
(1)若z1+z2=
2
+i
,求cos(α-β)的值;
(2)若z2對應的點P在直線x+y-
5
3
=0
上,且0<β<π,求sinβ-cosβ的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=2cosθ+i•sinθ,z2=1-i•(
3
cosθ),其中i是虛數(shù)單位,θ∈R.
(1)當cosθ=
3
3
時,求|z1•z2|;
(2)當θ為何值時,z1=z2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=cosα+isinα,z2=cosβ+isinβ,|z1-z2|=1.
(1)求cos(α-β)的值;
(2)若-
π
2
<β<0<α<
π
2
,且sinβ=-
3
5
,求sinα
的值.

查看答案和解析>>

同步練習冊答案