數(shù)列{an}的通項(xiàng)公式是an=
1
n(n+1)
(n∈N*),若前n項(xiàng)的和為
10
11
,則項(xiàng)數(shù)為
 
分析:觀察數(shù)列的通項(xiàng)公式可知適合利用裂項(xiàng)求和求Sn,然后代入可求n的值
解答:解:∵an=
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=a1+a2+…+an
=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1

n
n+1
=
10
11

∴n=10
故答案為:10
點(diǎn)評(píng):本題目主要考查了裂項(xiàng)求數(shù)列的和的方法,注意
1
n(n+k)
=
1
k
(
1
n
-
1
n+k
)
中的
1
k
是解題中容易出現(xiàn)錯(cuò)誤的地方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記bn=(2n+1)•(
1Sn
+2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:2Sn+1+an+1+4Sn+1Sn=0,
(1)求數(shù)列{an}的通項(xiàng)公an
(2)若記數(shù)學(xué)公式,Tn為數(shù)列{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2002-2003學(xué)年北京市朝陽(yáng)區(qū)高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和Sn=2n2+n-1,則數(shù)列{an}的通項(xiàng)公為   

查看答案和解析>>

同步練習(xí)冊(cè)答案