過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點F作一條漸線的垂線,垂足為點A,與另一條漸近線交于點B,若
FB
=2
FA
,則此雙曲線的離心率為( 。
A、
2
B、
3
C、2
D、
5
分析:先由
FB
=2
FA
,得出A為線段FB的中點,再借助于圖象分析出其中一條漸近線對應的傾斜角的度數(shù),找到a,b之間的等量關系,進而求出雙曲線的離心率.
解答:精英家教網(wǎng)解:如圖因為
FB
=2
FA
,所以A為線段FB的中點,
∴∠2=∠4,又∠1=∠3,∠2+∠3=90°,所以∠1=∠2+∠4=2∠2=∠3.
故∠2+∠3=90°=3∠2?∠2=30°?∠1=60°?
b
a
=
3

e2=1+(
b
a
)
2
=4?e=2.
故選C.
點評:本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的一個焦點F引它的漸近線的垂線,垂足為M,延長FM交y軸于E,若FM=ME,則該雙曲線的離心率為( 。
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點F作圓x2+y2=a2的切線FM(切點為M),交y軸于點P.若M為線段FP的中點,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1
的左焦點F作⊙O:x2+y2=a2的兩條切線,記切點為A,B,雙曲線左頂點為C,若∠ACB=120°,則雙曲線的漸近線方程為(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點F引它到漸進線的垂線,垂足為M,延長FM交y軸于E,若
FM
=2
ME
,則該雙曲線離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點F作一條漸近線的平行線,該平行線與y軸交于點P,若|OP|=|OF|,則雙曲線的離心率為( 。

查看答案和解析>>

同步練習冊答案