【題目】已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2 f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2﹣a|a+3|的值域.

【答案】
(1)解:函數(shù)f(x)=log2f(x)的最小值為2,即f(x)的最小值為4;

∵f(x)=x2+4ax+2a+6=(x+2a)2+2a+6﹣4a2≥4;

∴2a+6﹣4a2=4a=1 或 a=


(2)解:∵函數(shù)f(x)≥0恒成立,

∴△=16a2﹣4(2a+6)≤0,計算得出:﹣1 ;

∴g(a)=2﹣a|a+3|=2﹣a(a+3)=﹣(a+ 2+

∵g(a)在區(qū)間[﹣1, ]單調遞減;

∴g(a)min=g( )=﹣ ,g(a)max=g(﹣1)=4.

∴函數(shù)g(a)的值域為[﹣ ,4]


【解析】(1)因為函數(shù)f(x)=log2 f(x)的最小值為2,即f(x)的最小值為4;關鍵在于2a+6﹣4a2=4.(2)函數(shù)f(x)≥0恒成立,所以△≤0;同時可得g(a)在區(qū)間[﹣1, ]單調遞減,即可求出g(a)的值域.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的性質的相關知識,掌握當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】小型風力發(fā)電項目投資較少,開發(fā)前景廣闊.受風力自然資源影響,項目投資存在一定風險.根據(jù)測算,IEC(國際電工委員會)風能風區(qū)的分類標準如下:

風能分類

一類風區(qū)

二類風區(qū)

平均風速m/s

8.5---10

6.5---8.5

某公司計劃用不超過100萬元的資金投資于A、B兩個小型風能發(fā)電項目.調研結果是:未來一年內,位于一類風區(qū)的A項目獲利%的可能性為0.6,虧損%的可能性為0.4;

B項目位于二類風區(qū),獲利35%的可能性為0.6,虧損10%的可能性是0.2,不賠不賺的可能性是0.2.

假設投資A項目的資金為)萬元,投資B項目資金為)萬元,且公司要求對A項目的投資不得低于B項目.

(Ⅰ)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望, ;

(Ⅱ)根據(jù)以上的條件和市場調研,試估計一年后兩個項目的平均利潤之和 的最大值,并據(jù)此給出公司分配投資金額建議.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半徑為2,圓心在直線y=x+2上的圓C.
(1)當圓C經(jīng)過點A(2,2)且與y軸相切時,求圓C的方程;
(2)已知E(1,1),F(xiàn)(1,3),若圓C上存在點Q,使|QF|2﹣|QE|2=32,求圓心橫坐標a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=a (0<a<1)的單調遞增區(qū)間是(
A.(﹣∞,
B.( ,+∞)
C.(﹣∞,﹣
D.(﹣ ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設雙曲線x2 =1的左、右焦點分別為F1、F2 , 若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴重.市環(huán)保研究所對近期每天的空氣污染情況進行調査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關系為f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a為空氣治理調節(jié)參數(shù),且a∈(0,1).
(1)若a= ,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調節(jié)參數(shù)a應控制在什么范圍內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.展館附近一家川菜特色餐廳為了研究參會人數(shù)與本店所需原材料數(shù)量的關系,在交易會前查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):

(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關于的線性回歸方程;

(Ⅱ)若該店現(xiàn)有原材料12袋,據(jù)悉本次交易會大約有13萬人參加,為了保證原材料能夠滿足需要,則該店應至少再補充原材料多少袋?

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某小區(qū)提倡低碳生活,環(huán)保出行,在小區(qū)提供自行車出租.該小區(qū)有40輛自行車供小區(qū)住戶租賃使用,管理這些自行車的費用是每日92元,根據(jù)經(jīng)驗,若每輛自行車的日租金不超過5元,則自行車可以全部出租,若超過5元,則每超過1元,租不出的自行車就增加2輛,為了便于結算,每輛自行車的日租金x元只取整數(shù),用f(x)元表示出租自行車的日純收入(日純收入=一日出租自行車的總收入﹣管理費用)
(1)求函數(shù)f(x)的解析式及其定義域;
(2)當租金定為多少時,才能使一天的純收入最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)離心率為,過點的橢圓的兩條切線相互垂直.

(1)求此橢圓的方程;

(2)若存在過點的直線交橢圓于兩點,使得為右焦點),求的范圍.

查看答案和解析>>

同步練習冊答案