【題目】如圖,圓軸交于、兩點(diǎn),動(dòng)直線)與軸、軸分別交于點(diǎn)、,與圓交于、兩點(diǎn)(點(diǎn)縱坐標(biāo)大于點(diǎn)縱坐標(biāo)).

1)若,點(diǎn)與點(diǎn)重合,求點(diǎn)的坐標(biāo);

2)若,,求直線將圓分成的劣弧與優(yōu)弧之比;

3)若,設(shè)直線、的斜率分別為、,是否存在實(shí)數(shù)使得?若存在,求出的值,若不存在,說明理由.

【答案】1;(2;(3)存在,

【解析】

由題意得到,,

1)由,根據(jù)點(diǎn)與點(diǎn)重合,得到在直線上,求出,聯(lián)立直線與圓的方程,根據(jù)韋達(dá)定理,即可求出結(jié)果;

2)取中點(diǎn)為,連結(jié),由題意得到,推出,從而求出直線,再求出,進(jìn)而可求出結(jié)果;

2)設(shè)、,聯(lián)立直線與圓的方程,得到,再由題意得,推出,求出,根據(jù)得到,進(jìn)而可求出結(jié)果.

因?yàn)閳A軸交于、兩點(diǎn),所以,,

1)由,又點(diǎn)與點(diǎn)重合,直線與圓交于兩點(diǎn),

所以在直線上,

因此,所以,

,所以,因此

所以,即;

2)取中點(diǎn)為,連結(jié),因?yàn)?/span>,所以中點(diǎn),

所以,因此

所以直線的斜率為,由得:,

由點(diǎn)到直線距離公式可得:,又,

所以,故,所以,

因此劣弧的長度為:,

又圓的周長為:,

所以直線將圓分成的劣弧與優(yōu)弧之比為.

3)設(shè)、,因?yàn)?/span>,所以,代入圓可得:

,整理得:,

所以

、,所以,

,,

所以

,即

整理得:,解得,

,所以,

,即,

所以,解得,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點(diǎn)M(1,0)的直線與圓C交于A,B兩點(diǎn)(Ax軸上方),問在x軸正半軸上是否存在定點(diǎn)N,使得x軸平分∠ANB?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的兩頂點(diǎn)和垂心.

1)求直線AB的方程;

2)求頂點(diǎn)C的坐標(biāo);

3)求BC邊的中垂線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓Cab0)的左、右焦點(diǎn)分別為F1,F2,P為橢圓C上一點(diǎn),且PF2垂直于x軸,連結(jié)PF1并延長交橢圓于另一點(diǎn)Q,設(shè)

1)若點(diǎn)P的坐標(biāo)為(2,3),求橢圓C的方程及λ的值;

2)若4≤λ≤5,求橢圓C的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市組織高三全體學(xué)生參加計(jì)算機(jī)操作比賽,等級(jí)分為110分,隨機(jī)調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:

(1)計(jì)算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進(jìn)行比較.

(2)A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級(jí)的比賽,求這2人成績之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下三個(gè)關(guān)于圓錐曲線的命題中:

①設(shè)為兩個(gè)定點(diǎn),為非零常數(shù),若,則動(dòng)點(diǎn)的軌跡是雙曲線;

②方程的兩根可分別作為橢圓和雙曲線的離心率;

③雙曲線與橢圓有相同的焦點(diǎn);

④已知拋物線,以過焦點(diǎn)的一條弦為直徑作圓,則此圓與準(zhǔn)線相切,其中真命題為__________.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)fx),若存在區(qū)間M[a,b]ab)使得{y|yfx),xM}M,則稱區(qū)間M為函數(shù)fx)的一個(gè)穩(wěn)定區(qū)間,給出下列四個(gè)函數(shù):

fx,②fx)=x3,③fx)=cosx,④fx)=tanx

其中存在穩(wěn)定區(qū)間的函數(shù)有(

A.①②③B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)正方形花圃被分成5.

1)若給這5個(gè)部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?

2)若向這5個(gè)部分放入7個(gè)不同的盆栽,要求每個(gè)部分都有盆栽,問有多少種不同的放法?

查看答案和解析>>

同步練習(xí)冊(cè)答案