某高校在2012年自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績(jī)較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,
(ⅰ)已知學(xué)生甲和學(xué)生乙的成績(jī)均在第三組,求學(xué)生甲和學(xué)生乙恰有一人進(jìn)入第二輪面試的概率;
(ⅱ)學(xué)校決定在這已抽取到的6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官L的面試,設(shè)第4組中有名學(xué)生被考官L面試,求的分布列和數(shù)學(xué)期望.
(1)0.3 0.2 0.1 (2)(ⅰ) (ⅱ)

試題分析:(1)由頻率分布直方圖的橫坐標(biāo)得到組距,縱坐標(biāo)得到每組的頻率/組距,故而每組的頻率即為縱坐標(biāo)與組距的乘積.
(2)分層抽樣就是在保持每個(gè)個(gè)體入樣的可能性相等的條件下把樣本容量分?jǐn)偟矫恳粚?即樣本容量與總體數(shù)量之比與某層抽樣個(gè)數(shù)與該層總數(shù)之比相等,進(jìn)而得到每層抽樣的人數(shù)
(i)第三組要抽樣3人,在30人中抽樣三人,無序即為組合數(shù),即中抽樣情況,根據(jù)題目要求“學(xué)生甲和學(xué)生乙恰有一人進(jìn)入第二輪面試”的事件分為兩種情況①甲乙中只有甲入選,即還需要在28人中無序抽樣2人,即,②甲乙中只有乙入選,即還需要在28人中無序抽樣2人,即.在利用古典概型概率計(jì)算公式即可得到相應(yīng)的概率
(ii)由分層抽樣的結(jié)果可知6人中有兩人是第四組的,即,再利用組合數(shù)算得從6人中無序抽樣兩人的情況數(shù)和分別有0,1,2人是第四組的情況數(shù),即可得到相應(yīng)的概率,進(jìn)而得到分布列,在把三種情況的概率與其分別相乘再相加即可得到期望.
試題解析:(1)  第三組的頻率為0.065="0.3;" 第四組的頻率為0.045=0.2;第五組的頻率為0.025=0.1.                                 3分
(2)(ⅰ)設(shè)“學(xué)生甲和學(xué)生乙恰有一人進(jìn)入第二輪面試”為事件A,第三組應(yīng)有3人進(jìn)入面試則:  P(A)= =                                                6分
(ⅱ)第四組應(yīng)有2人進(jìn)入面試,則隨機(jī)變量可能的取值為0,1,2.             7分
,則隨機(jī)變量的分布列為:

0
1
2
P



 
12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三人參加某次招聘會(huì),假設(shè)甲能被聘用的概率是,甲、丙兩人同時(shí)不能被聘用的概率是,乙、丙兩人同時(shí)能被聘用的概率為,且三人各自能否被聘用相互獨(dú)立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對(duì)值,求的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有大小、質(zhì)地均相同的4個(gè)紅球與2個(gè)白球.若從中有放回地依次取出一個(gè)球,記6次取球中取出紅球的次數(shù)為ξ,則ξ的期望E(ξ)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某電器商經(jīng)過多年的經(jīng)驗(yàn)發(fā)現(xiàn)本店每個(gè)月售出的電冰箱的臺(tái)數(shù)ξ是一個(gè)隨機(jī)變量,它的分布列為P(ξ=i)=(i=1,2,…,12);設(shè)每售出一臺(tái)電冰箱,電器商獲利300元.如銷售不出,則每臺(tái)每月需花保管費(fèi)100元.問電器商每月初購進(jìn)多少臺(tái)電冰箱才能使月平均收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A高校自主招生設(shè)置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設(shè)置三個(gè)成績(jī)等級(jí):優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進(jìn)入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、、p2.
(1)求學(xué)生甲不能通過A高校自主招生考試的概率;
(2)設(shè)X為學(xué)生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測(cè),今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:
方案1:運(yùn)走設(shè)備,此時(shí)需花費(fèi)4000元;
方案2:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時(shí),當(dāng)兩河流都發(fā)生洪水時(shí)損失達(dá)60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.
(1)試求方案3中損失費(fèi)X(隨機(jī)變量)的分布列;
(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

袋子里有完全相同的3只紅球和4只黑球,今從袋子里隨機(jī)取球.
(Ⅰ)若有放回地取3次,每次取一個(gè)球,求取出2個(gè)紅球1個(gè)黑球的概率;
(Ⅱ)若無放回地取3次,每次取一個(gè)球,若取出每只紅球得2分,取出每只黑球得1分,求得分的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有大小相同的三個(gè)球,編號(hào)分別為1,2,2,從袋中每次取出一個(gè)球,若取到球的編號(hào)為奇數(shù),則取球停止,用X表示所有被取到的球的編號(hào)之和,則X的方差為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某個(gè)不透明的袋中裝有除顏色外其它特征完全相同的8個(gè)乒乓球(其中3個(gè)是白色球,5個(gè)是黃色球),小李同學(xué)從袋中一個(gè)一個(gè)地摸乒乓球(每次摸出球后不放回),當(dāng)摸到的球是黃球時(shí)停止摸球.用隨機(jī)變量表示小李同學(xué)首先摸到黃色乒乓球時(shí)的摸球次數(shù),則隨機(jī)變量的數(shù)學(xué)期望值   

查看答案和解析>>

同步練習(xí)冊(cè)答案