(14分)如圖所示,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點(diǎn),PA=AD=a.
(1)求證:MN∥平面PAD;
(2)求證:平面PMC⊥平面PCD.
見(jiàn)解析。
【解析】
試題分析:證明:如答圖所示
⑴設(shè)PD的中點(diǎn)為E,連結(jié)AE、NE,
由N為PD的中點(diǎn)知ENDC,
又ABCD是矩形,∴DCAB,∴ENAB
又M是AB的中點(diǎn),∴ENAN,
∴AMNE是平行四邊形
∴MN∥AE,而AE平面PAD,NM平面PAD
∴MN∥平面PAD
證明:⑵∵PA=AD,∴AE⊥PD,
又∵PA⊥平面ABCD,CD平面ABCD,
∴CD⊥PA,而CD⊥AD,∴CD⊥平面PAD
∴CD⊥AE, ∵PD∩CD=D,∴AE⊥平面PCD,
∵M(jìn)N∥AE,∴MN⊥平面PCD,
又MN平面PMC,
∴平面PMC⊥平面PCD.
考點(diǎn):本題主要考查四棱錐的特征、點(diǎn)線(xiàn)面關(guān)系重大平行與垂直,考查空間想象能力及邏輯推理論證能力。
點(diǎn)評(píng):證明空間問(wèn)題注意轉(zhuǎn)化成平面問(wèn)題,充分利用平面圖形的特征,這是立體幾何中的基本問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com