【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點(diǎn)B1到平面BDC1的距離.
【答案】
(1)證明:由題設(shè)知,三棱柱的側(cè)面為矩形.
由于D是棱AA1的中點(diǎn),故DC=DC1.
又AC= AA1,可得DC2+DC12=CC12,所以△C1DC是直角三角形,
∴C1D⊥DC.
而DC1⊥BD,DC∩BD=D,
所以DC1⊥面BCD
(2)解:由(1)知BC⊥DC1,且BC⊥CC1,則BC⊥平面ACC1A1,所以CA,CB,CC1兩兩垂直.
以C為坐標(biāo)原點(diǎn), 的方向?yàn)閤軸的正方向,建立如圖所示的空間直角坐標(biāo)系C﹣xyz.
由題意知B(0,1,0),D(1,0,1),C1(0,0,2),B1(0,1,2),
P( , ,2),
則 =(1,﹣1,1), =(﹣1,0,1), =(﹣ ,﹣ ,0),
=(0,﹣1,0)
設(shè) =(x,y,z)是平面BDC1的法向量,則
可取 =(1,2,1).
設(shè)點(diǎn)B1到平面BDC1的距離為d,則d=| |= .
【解析】(1)在矩形ACC1A1中,利用勾股定理證明C1D⊥DC,由DC1⊥BD,DC∩BD=D能證明DC1⊥平面BDC;(2)建立空間直角坐標(biāo)系,求出平面BDC1的法向量,即可求點(diǎn)B1到平面BDC1的距離.
【考點(diǎn)精析】本題主要考查了直線與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn .
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1),g(x)=loga(3﹣x)(a>0且a≠1)
(1)求函數(shù)h(x)=f(x)﹣g(x)的定義域;
(2)利用對(duì)數(shù)函數(shù)的單調(diào)性,討論不等式f(x)≥g(x)中x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間
(2)若存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log (3x2﹣ax+5)在[﹣1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( )
A.[﹣8,﹣6]
B.(﹣8,﹣6]
C.(﹣∞,﹣8)∪(﹣6,+∞)
D.(﹣∞,﹣6]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題共12分)
已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F1 , F2為橢圓C: (a>b>0)的左、右焦點(diǎn),M為橢圓C的上頂點(diǎn),且|MF1|=2,右焦點(diǎn)與右頂點(diǎn)的距離為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓C相交于A,B兩點(diǎn),且直線OA,OB的斜率kOA , kOB滿足kOAkOB=﹣ ,求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),定直線,動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比等于.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)軌跡與軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn)作不與軸重合的直線交軌跡于兩點(diǎn),直線分別交直線于點(diǎn).試問(wèn):在軸上是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+ (a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x﹣2y=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)﹣kx<0恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時(shí), + + +…+ > .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com