對(duì)于數(shù)列{an},若存在確定的自然數(shù)T>0,使得對(duì)任意的自然數(shù)n∈N*,都有:an+T=an成立,則稱(chēng)數(shù)列{an}是以T為周期的周期數(shù)列.
(1)記Sn=a1+a2+a3+…+an,若{an}滿足an+2=an+1-an,且S2=1007,S3=2010,求證:數(shù)列{an}是以6為周期的周期數(shù)列,并求S2009
(2)若{an}滿足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,試判斷{an}是否為周期數(shù)列,且說(shuō)明理由;
(3)由(1)得數(shù)列{an},又設(shè)數(shù)列{bn},其中bn=an+2n+
2009
2n
,問(wèn)是否存在最小的自然數(shù)n(n∈N*),使得對(duì)一切自然數(shù)m≥n,都有bm>2009?請(qǐng)說(shuō)明理由.
分析:(1)an+6=an+5-an-4=an+4-an+3-an-4=-an+3=-an+2+an+1=-(an+1-an)+an+1=an,得T=6,由此能求出 S2009=S5=a3=1003.
(2)當(dāng)p=0時(shí),a1=a2=0,an+1=-2an2+2an=0,即{an}是周期數(shù)列,由此能推導(dǎo)出數(shù)列{an}是遞增數(shù)列,非周期數(shù)列.
(3)由S2=a1+a2=a1+1005=1007,知a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,且數(shù)列{an}是周期為6的周期數(shù)列,由此能推導(dǎo)出存在最小的自然數(shù)n=1506,對(duì)一切自然數(shù)m,當(dāng)m≥n=1506,都有bm>2009.
解答:解:(1)an+6=an+5-an-4=an+4-an+3-an-4
=-an+3=-an+2+an+1=-(an+1-an)+an+1=an,
得T=6
所以,數(shù)列{an}是以6為周期的周期數(shù)列,
周期為任意正整數(shù)--(2分)
又由 
an+2=an+1-an
S2=1007
S3=2010
,
得a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003S6=0,
且數(shù)列{an}是以6為周期的周期數(shù)列,
所以,S6n=0,
所以 S2009=S5=a3=1003--(3分)
(2)當(dāng)p=0時(shí),a1=a2=0,an+1=-2an2+2an=0,
即{an}是周期數(shù)列--(5分)
當(dāng)p≠0,p∈(0,
1
2
)
時(shí),
an+1=-2
a
2
n
+2an═-2(an-
1
2
)2+
1
2
∈(0,
1
2
)

由已知a1=p∈[0, 
1
2
)
,
且an+1=-2an2+2an,
可得a2∈[0,
1
2
)
,
依此類(lèi)推可得a_∈[0,
1
2
)
(n∈N*
所以 an+1-an=-2an2+an=an(1-2an)>0,所以an+1>an
即數(shù)列{an}是遞增數(shù)列,非周期數(shù)列;--(8分)
(3)由(1)知,S2=a1+a2=a1+1005=1007,
所以a1=2,a2=1005,a3=1003,a4=-2,a5=-1005,a6=-1003,
且數(shù)列{an}是周期為6的周期數(shù)列,
所以(anmax=1005(n∈N*),(anmin=-1005,
且 a6n+1=2,a6n+2=1003,a6n+3=1005,a6n+4=-2,
a6n+5=-1005,a6n+6=-1003,--(9分)
而當(dāng)n≥12時(shí),
2009
2n
∈(0,
1
2
)
,
bn=an+2n+
2009
2n
≥2n-1005+
2009
2n
>2009
,
即2n≥2009+1005=30142n+
2009
2n
≥1004
,
得n≥1507,即 n≥1507時(shí),
都有bn>2009;--(12分)
b1506=a1506+2×1506+
2009
21506
=2009+
2009
21506
>2009
b1505=a1505+2×1505+
2009
21505
=2007+
2009
21506
<2009
--(13分)
綜上,存在最小的自然數(shù)n=1506,
對(duì)一切自然數(shù)m,當(dāng)m≥n=1506,
都有bm>2009.--(14分)
點(diǎn)評(píng):本題考查數(shù)列和不等式的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意挖掘題設(shè)中的隱條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{an},若滿足a1
a2
a1
,
a3
a2
,…,
an
an-1
,…
是首項(xiàng)為1,公比為2的等比數(shù)列,則a100等于( 。
A、2100
B、299
C、25050
D、24950

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=
log2(1-x),x≤0
f(x-1)-f(x-2),x>0

(1)計(jì)算:f(-1)、f(0)、f(1)、f(2),并求出f(n+3)與f(n),n∈N*滿足的關(guān)系式;
(2)對(duì)于數(shù)列{an},若存在正整數(shù)T,使得an+T=an,則稱(chēng)數(shù)列{an}為周期數(shù)列,T為數(shù)列的周期,令an=f(n) , n∈N*,證明:{an}為周期數(shù)列,指出它的周期T,并求a2012的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)對(duì)于數(shù)列{an},若存在一個(gè)常數(shù)M,使得對(duì)任意的n∈N*,都有|an|≤M,則稱(chēng){an}為有界數(shù)列.
(Ⅰ)判斷an=2+sinn是否為有界數(shù)列并說(shuō)明理由.
(Ⅱ)是否存在正項(xiàng)等比數(shù)列{an},使得{an}的前n項(xiàng)和Sn構(gòu)成的數(shù)列{Sn}是有界數(shù)列?若存在,求數(shù)列{an}的公比q的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(Ⅲ)判斷數(shù)列an=
1
3
+
1
5
+
1
7
+…+
1
2n-1
(n≥2)
是否為有界數(shù)列,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)對(duì)于數(shù)列{an},若存在常數(shù)T≥0,使得對(duì)于任意n∈N*,均有|an|≤T,則稱(chēng){an}為有界數(shù)列.以下數(shù)列{an}為有界數(shù)列的是
 
;(寫(xiě)出滿足條件的所有序號(hào))
①an=n-2②an=
1
n+2
an
an+1
=2,a1=1

(2)數(shù)列{an}為有界數(shù)列,且滿足an+1=-an2+2an,a1=t(t>0),則實(shí)數(shù)t的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案