(2012•福建)在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)現(xiàn)分別從{an}和{bn}的前3項(xiàng)中各隨機(jī)抽取一項(xiàng),寫出相應(yīng)的基本事件,并求這兩項(xiàng)的值相等的概率.
分析:(Ⅰ)先根據(jù)條件求出公差和公比,即可求出通項(xiàng);
(Ⅱ)先根據(jù)第一問的結(jié)果把基本事件都寫出來,再找到滿足要求的即可求出結(jié)論.
解答:解:(Ⅰ)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由題得:S10=10+
10×9
2
d=55;b4=q3=8;
解得:d=1,q=2.
所以:an=n,bn=2n-1..
(Ⅱ)分別從從{an}和{bn}的前3項(xiàng)中各隨機(jī)抽取一項(xiàng),得到的基本事件有9個(gè):
(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).
兩項(xiàng)的值相等的有(1,1),(2,2).
∴這兩項(xiàng)的值相等的概率:
2
9
點(diǎn)評:本題主要考察等差數(shù)列等比數(shù)列,古典概型等基礎(chǔ)知識,考察運(yùn)算能力,化歸與轉(zhuǎn)化思想.是對基礎(chǔ)知識的綜合考察,屬于中檔題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)在△ABC中,已知∠BAC=60°,∠ABC=45°,BC=
3
,則AC=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)已知關(guān)于x的不等式x2-ax+2a>0在R上恒成立,則實(shí)數(shù)a的取值范圍是
(0,8)
(0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)已知函數(shù)f(x)=ex+ax2-ex,a∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)試確定a的取值范圍,使得曲線y=f(x)上存在唯一的點(diǎn)P,曲線在該點(diǎn)處的切線與曲線只有一個(gè)公共點(diǎn)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°,如圖1.把△ABD沿BD翻折,使得平面ABD⊥平面BCD,如圖2.
(Ⅰ)求證:CD⊥AB;
(Ⅱ)若點(diǎn)M為線段BC中點(diǎn),求點(diǎn)M到平面ACD的距離;
(Ⅲ)在線段BC上是否存在點(diǎn)N,使得AN與平面ACD所成角為60°?若存在,求出
BN
BC
的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案