證明:數(shù)學(xué)公式<1+數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式+…+數(shù)學(xué)公式<n+1(n>1),當(dāng)n=2時(shí),中間式子等于


  1. A.
    1
  2. B.
    1+數(shù)學(xué)公式
  3. C.
    1+數(shù)學(xué)公式+數(shù)學(xué)公式
  4. D.
    1+數(shù)學(xué)公式+數(shù)學(xué)公式+數(shù)學(xué)公式
D
分析:分析式子1++++…+ 的結(jié)構(gòu)特點(diǎn),式子第一項(xiàng)的分母是1,末項(xiàng)的分母為,且相鄰的項(xiàng)分母遞增1.
解答:中間式子第一項(xiàng)的分母是1,末項(xiàng)的分母為,且相鄰的項(xiàng)分母遞增1,
當(dāng)n=2時(shí),中間式子等于 1+++,
故選D.
點(diǎn)評(píng):本題考查式子1++++…+ 的結(jié)構(gòu)特點(diǎn),是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
14
時(shí),由k遞推到k+1時(shí),左邊應(yīng)添加的因式為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿(mǎn)足a1=2,且(an+1-an)g(an)+f(an)=0.
(1)試探究數(shù)列{an-1}是否是等比數(shù)列;
(2)試證明
ni=1
ai≥1+n
;
(3)設(shè)bn=3f(an)-g(an+1),試探究數(shù)列{bn}是否存在最大項(xiàng)和最小項(xiàng).若存在求出最大項(xiàng)和最小項(xiàng),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),從n=k到n=k+1,左邊的式子之比是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,對(duì)一個(gè)量用兩種方法分別算一次,由結(jié)果相同可以構(gòu)造等式,這是一種非常有用的思想方法--“算兩次”(G.Fubini原理),如小學(xué)有列方程解應(yīng)用題,中學(xué)有等積法求高…
請(qǐng)結(jié)合二項(xiàng)式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
證明:
(1)
n
r=0
(
C
r
n
)2=
C
n
2n
;  
(2)
m
r=0
(
C
r
n
C
m-r
n
)=
C
m
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在[x1,x2]上的函數(shù)y=f (x)的圖象為C,C的端點(diǎn)為A,B,P (x,y)為C上任意一點(diǎn),若
OA
=(x1,y1),
OB
=(x2,y2),且x=λx1+(1-λ)x2;記
OM
OA
+(1-λ)
OB
,現(xiàn)定義“當(dāng)|
PM
|≤k
(k為正的常數(shù))恒成立時(shí),稱(chēng)函數(shù)y=f (x)在[x1,x2]上可在標(biāo)準(zhǔn)k下線性近似”.
(1)證明:0≤λ≤1;
(2)請(qǐng)給出一個(gè)標(biāo)準(zhǔn)k的范圍,使得在[0,1]上的函數(shù)y=x2與y=x3中有且只有一個(gè)可在標(biāo)準(zhǔn)k下線性近似.

查看答案和解析>>

同步練習(xí)冊(cè)答案