12、已知m,n是不重合的直線(xiàn),α,β是不重合的平面,給出下列命題;
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③如果m?α,n?α,m,n是異面直線(xiàn),則n與α相交;
④若α∩β=m.n∥m,且n?α,n?β,則n∥α,且n∥β
其中正確確命題的序號(hào)是
①④
(把正確命題的序號(hào)都填上)
分析:①由面面垂直的判定理判斷.②由面面平行判定定理判斷③也可能平行④若由線(xiàn)面平行的判定定理判斷.
解答:解:①若m⊥α,m?β,則α⊥β,由面面垂直的判定理知正確.
②若m?α,n?α,m∥β,n∥β,則α∥β;兩條相交直線(xiàn)才行,不正確.
③如果m?α,n?α,m,n是異面直線(xiàn),則n與α相交;也可能平行,不正確.
④若α∩β=m.n∥m,且n?α,n?β,則n∥α,且n∥β由線(xiàn)面平行的判定定理知正確.
故答案為:①④
點(diǎn)評(píng):本題主要考查線(xiàn)面平行,面面平行,面面垂直的判斷定理及空間幾何體的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、已知m、n是不重合的直線(xiàn),α、β是不重合的平面,有下列命題:
(1)若α∩β=n,m∥n,則m∥α,m∥β;
(2)若m⊥α,m⊥β,則α∥β;
(3)若m∥α,m⊥n,則n⊥α;
(4)若m⊥α,n?α,則m⊥n.
其中所有真命題的序號(hào)是
(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、已知m、n是不重合的直線(xiàn),α、β是不重合的平面,有下列命題:
①若m?α,n∥α,則m∥n;
②若m∥α,m∥β,則α∥β;
③若α∩β=n,m∥n,則m∥α且m∥β;
④若m⊥α,m⊥β,則α∥β.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不重合的直線(xiàn),α、β是不重合的平面,給出下列四個(gè)命題
①若m⊥α,m⊥β,則α∥β
②若m?α,n?β,m∥n,則α∥β
③若m∥n,m⊥α,則n⊥α
④若m⊥α,m?β,則α⊥β
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不重合的兩直線(xiàn),α、β、γ是三個(gè)兩兩不重合的平面.給出下面四個(gè)命題:
①若m⊥α,m⊥β則α∥β;
②若γ⊥α,γ⊥β則α∥β;
③若m⊆α,n⊆β,m∥n則α∥β;
④若m、n是異面直線(xiàn),m⊆α,m∥β,n⊆β,n∥α則α∥β,
其中是真命題的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案