已知個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:

    第1列      第2列    第3列   …     第n列

第1行                                …     

第2行                 … 

第3行      … 

第n行          … 

其中表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等比數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a2,3=8,a3,4=20.

   (1)求;

   (2)設(shè)能被3整除.

同下


解析:

(1)由題意,,

故第1行公差d=1,所以………………6分

(2)同(1)可得,

所以

兩式相減,得

所以能被3整除. ………………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a2(n≥4,n∈N*)個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:
精英家教網(wǎng)
其中aik(1≤i≤n,1≤k≤n,k∈N*)表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,a23=8,a34=20.
(1)求a11和aik;
(2)設(shè)An=a1n+a2(n-1)+a3(n-2)+…+an1,是否存在整數(shù)p使得不等式An≥11n+p對(duì)任意的n∈N*恒成立,如果存在,求出p的最大值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知n2(n≥4且n∈N*)個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:
          第1列     第2列    第3列   …第n列
第1行     a1,1 a1,2 a1,3 …a1,n
第2行     a2,1 a2,2 a2,3 …a2,n
第3行     a3,1 a3,2 a3,3 …a3,n

第n行     an,1 an,2 an,3 …an,n
其中ai,k(i,k∈N*,且1≤i≤n,1≤k≤n)表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等比數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a2,3=8,a3,4=20.
(1)求a1,1a2,2
(2)設(shè)An=a1,n+a2,n-1+a3,n-2+…+an,1求證:An+n能被3整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)已知個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:

       第1列         第2列    第3列   …     第n列

第1行                                     …     

第2行                         …   

第3行           …   

第n行                  …   

其中表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等比數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a2,3=8,a3,4=20.

 (1)求;  (2)設(shè)能被3整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分16分)已知個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣:

       第1列         第2列    第3列   …     第n列

第1行                                     …     

第2行                         …   

第3行           …   

第n行                  …   

其中表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等比數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a2,3=8,a3,4=20.

 (1)求;  (2)設(shè)能被3整除.

查看答案和解析>>

同步練習(xí)冊(cè)答案