分析 (1)OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,可得y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)平方利用基本不等式的性質(zhì)即可得出.
解答 解:(1)AB=2OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,
∴y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)y2=4x2(1600-x2)≤4×$(\frac{{x}^{2}+1600-{x}^{2}}{2})^{2}$=16002,即y≤1600,當且僅當x=20$\sqrt{2}$時取等號.
∴截取AD=20$\sqrt{2}$時,才能使矩形材料ABCD的面積最大,最大面積為1600.
點評 本題考查了函數(shù)的性質(zhì)、矩形的面積計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,-$\frac{1}{3}$) | B. | (-3,-1) | C. | (-1,+∞) | D. | (-∞,-1)∪(-$\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{x}-\frac{1}{y}>0$ | B. | ${(\frac{1}{2})^x}-{(\frac{1}{2})^y}<0$ | C. | log2x+log2y>0 | D. | sinx-siny>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com