已知基本不等式:≥(a、b都是正實(shí)數(shù),當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立)可以推廣到n個(gè)正實(shí)數(shù)的情況,即對(duì)于n個(gè)正實(shí)數(shù)a1,a2,a3,…,an,有≥(當(dāng)且僅當(dāng)a1=a2=a3=…=an時(shí),取等號(hào)).
同理,當(dāng)a、b都是正實(shí)數(shù)時(shí),(a+b)(+)≥2ab·2·=4,可以推導(dǎo)出結(jié)論:對(duì)于n個(gè)正實(shí)數(shù)a1,a2,a3,…,an有(a1+a2+a3)(++)≥________;(a1+a2+a3+a4)(+++)≥________;(a1+a2+a3+…+an)(+++…)≥________;
如果對(duì)于n個(gè)同號(hào)實(shí)數(shù)a1,a2,a3,…,an(同正或者同負(fù)),那么,根據(jù)上述結(jié)論,(a1+a2+a3+…+an)(+++…)的取值范圍是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=alnx+bx,且f(1)= -1,f′(1)=0,
⑴求f(x);
⑵求f(x)的最大值;
⑶若x>0,y>0,證明:lnx+lny≤.
本題主要考查函數(shù)、導(dǎo)數(shù)的基本知識(shí)、函數(shù)性質(zhì)的處理以及不等式的綜合問題,同時(shí)考查考生用函數(shù)放縮的方法證明不等式的能力.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年云南省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:選擇題
(本小題考查基本不等式的應(yīng)用)已知,
則的最小值是
A.2 B. C.4 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
同理,當(dāng)a、b都是正實(shí)數(shù)時(shí),(a+b)(+)≥2ab·2·=4,可以推導(dǎo)出結(jié)論:對(duì)于n個(gè)正實(shí)數(shù)a1,a2,a3,…,an有(a1+a2+a3)(++)≥_______;(a1+a2+a3+a4)(+++)≥________;(a1+a2+a3+…+an)(+++···)≥________;
如果對(duì)于n個(gè)同號(hào)實(shí)數(shù)a1,a2,a3,…,an(同正或者同負(fù)),那么,根據(jù)上述結(jié)論,(a1+a2+a3+…+an)(+++···)的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com