(07年遼寧卷)(14分)
已知正三角形的三個頂點(diǎn)都在拋物線上,其中為坐標(biāo)原點(diǎn),設(shè)圓是的內(nèi)接圓(點(diǎn)為圓心)
(I)求圓的方程;
(II)設(shè)圓的方程為,過圓上任意一點(diǎn)分別作圓的兩條切線,切點(diǎn)為,求的最大值和最小值.
本小題主要考查平面向量,圓與拋物線的方程及幾何性質(zhì)等基本知識,考查綜合運(yùn)用解析幾何知識解決問題的能力.
解析:(I)解法一:設(shè)兩點(diǎn)坐標(biāo)分別為,,由題設(shè)知
.
解得,
所以,或,.
設(shè)圓心的坐標(biāo)為,則,所以圓的方程為
.
解法二:設(shè)兩點(diǎn)坐標(biāo)分別為,,由題設(shè)知
.
又因為,,可得.即
.
由,,可知,故兩點(diǎn)關(guān)于軸對稱,所以圓心在軸上.
設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)坐標(biāo)為,于是有,解得,所以圓的方程為.
(II)設(shè),則
.
在中,,由圓的幾何性質(zhì)得
,,
所以,由此可得
.
則的最大值為,最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年遼寧卷文)(12分)
已知函數(shù)(其中)
(I)求函數(shù)的值域;
(II)若函數(shù)的圖象與直線的兩個相鄰交點(diǎn)間的距離為,求函數(shù)的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年遼寧卷理)已知與是定義在上的連續(xù)函數(shù),如果與僅當(dāng)時的函數(shù)值為0,且,那么下列情形不可能出現(xiàn)的是( )
A.0是的極大值,也是的極大值
B.0是的極小值,也是的極小值
C.0是的極大值,但不是的極值
D.0是的極小值,但不是的極值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年遼寧卷理)(12分)
某企業(yè)準(zhǔn)備投產(chǎn)一批特殊型號的產(chǎn)品,已知該種產(chǎn)品的成本與產(chǎn)量的函數(shù)關(guān)系式為
該種產(chǎn)品的市場前景無法確定,有三種可能出現(xiàn)的情況,各種情形發(fā)生的概率及產(chǎn)品價格與產(chǎn)量的函數(shù)關(guān)系式如下表所示:
市場情形 | 概率 | 價格與產(chǎn)量的函數(shù)關(guān)系式 |
好 | 0.4 | |
中 | 0.4 | |
差 | 0.2 |
設(shè)分別表示市場情形好、中差時的利潤,隨機(jī)變量,表示當(dāng)產(chǎn)量為,而市場前景無法確定的利潤.
(I)分別求利潤與產(chǎn)量的函數(shù)關(guān)系式;
(II)當(dāng)產(chǎn)量確定時,求期望;
(III)試問產(chǎn)量取何值時,取得最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com