已知函數(shù)f(x)=x3-ax2,其中a為實常數(shù).
(1)設(shè)當(dāng)x∈(0,1)時,函數(shù)y = f(x)圖象上任一點P處的切線的斜率為k,若k≥-1,求a的取值范圍;
(2)當(dāng)x∈[-1,1]時,求函數(shù)y=f(x)+a(x2-3x)的最大值.
解析:(1)
由k≥-1,得3x2-2ax+1≥0,即a≤恒成立…………(2分)
∴a≤(3x+)min………………………………………………………………(4分)
∵當(dāng)x∈(0,1)時,3x+≥2=2,當(dāng)且僅當(dāng)x=時取等號.
∴(3x+)min =.故a的取值范圍是(-∞,].……………………(6分)
(2)設(shè)g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]則
g′(x)=3x2-3a=3(x2-a).………………………………………………………(8分)
①當(dāng)a≥1時,∴g′(x)≤0.從而g(x)在[-1,1]上是減函數(shù).
∴g(x)的最大值為g(-1)=3a-1.…………………………………………(9分)
②當(dāng)0<a<1時,g′(x)=3(x+)(x-).
由g′(x) >0得,x>或x<-:由g′(x)< 0得,-<x<.
∴g(x)在[-1,-],[,1]上增函數(shù),在[-,]上減函數(shù).
∴g(x)的極大值為g(-)=2a.…………………………………………(10分)
由g(-)-g(1)=2a+3a-1=(+1)?(2-1)知
當(dāng)2-1<0,即0≤a<時,g(-)<g(1)
∴g(x)=g(1)=1-3a.…………………………………………(11分)
當(dāng)2-1≥0,即<a<1時,g(-)≥g(1)
∴g(x)=g(-)=2a.………………………………………………(12分)
③當(dāng)a≤0時,g′(x)≥0,從而g(x)在[-1,1]上是增函數(shù).
∴g(x)=g(1)=1-3a………………………………………………………(13分)
綜上分析,g(x) ………………………………(14分)
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
f′(x) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題
1 |
3 |
f′(x) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com