設(shè)M是圓x2+y2-2x-2y+1=0上的點(diǎn),則M到直線3x+4y-22=0的最長距離是______,最短距離是______.
∵圓x2+y2-2x-2y+1=0的圓心(1,1),半徑為1,
圓心(1、1)到直線3x+4y-22=0的距離d=
|3+4-22|
5
=3,
∴圓x2+y2-2x-2y+1=0上的點(diǎn)到直線3x+4y-22=0距離的最小值是3-r=3-1=2,
最大值為:3+r=3+1=4.
故答案為:4;2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xoy中,設(shè)二次函數(shù)f(x)=x2+2x+b(x∈R)的圖象與兩坐標(biāo)軸有三個(gè)不同的交點(diǎn).經(jīng)過這三個(gè)交點(diǎn)的圓記為C.
(I)求實(shí)數(shù)b的取值范圍;
(II)求圓C的一般方程;
(III)圓C是否經(jīng)過某個(gè)定點(diǎn)(其坐標(biāo)與b無關(guān))?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
2
,點(diǎn)(1,-
3
2
)
為橢圓上的一點(diǎn),O為坐標(biāo)原.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l:y=kx+m為圓x2+y2=
4
5
的切線,直線l交橢圓于A、B兩點(diǎn),求證:∠AOB為直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C1:x2+y2+D1x+E1y-3=0與圓C2:x2+y2+D2x+E2y-3=0都經(jīng)過點(diǎn)A(2,-1),則同時(shí)經(jīng)過點(diǎn)(D1,E1)和點(diǎn)(D2,E2)的直線方程為( 。
A.2x-y+2=0B.x-y-2=0C.x-y+2=0D.2x+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓A:(x-2)2+y2=1,曲線B:6-x=
4-y2
和直線l:y=x.
(1)若點(diǎn)M、N、P分別是圓A、曲線B和直線l上的任意點(diǎn),求|PM|+|PN|的最小值;
(2)已知?jiǎng)又本m:(a-2)x+by-2a+3=0(a,b∈R)與圓A相交于S、T兩點(diǎn),又點(diǎn)Q的坐標(biāo)是(a,b).
①判斷點(diǎn)Q與圓A的位置關(guān)系;
②求證:當(dāng)實(shí)數(shù)a,b的值發(fā)生變化時(shí),經(jīng)過S、T、Q三點(diǎn)的圓總過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l:mx+y-m=0交圓C:x2+y2-4x-2y=0于A,B兩點(diǎn),當(dāng)|AB|最短時(shí),直線l的方程是( 。
A.x+y-1=0B.x-y-1=0C.x-y+1=0D.x+y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l:y=2x+b將圓x2+y2-2x-4y+4=0的面積平分,則b=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x2+2x-3與坐標(biāo)軸的交點(diǎn)都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C被直線x-y+a=0截得的弦長為2
3
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,若△ABC的三邊長分別為|a|,|b|,|c|,則該三角形為______(判斷三角形的形狀).

查看答案和解析>>

同步練習(xí)冊(cè)答案